Paul C. Hanson

and 5 more

Lake water clarity, phytoplankton biomass, and hypolimnetic oxygen concentration are metrics of water quality that are highly degraded in eutrophic systems. Eutrophication is linked to legacy nutrients stored in catchment soils and in lake sediments. Long lags in water quality improvement under scenarios of nutrient load reduction to lakes indicate an apparent ecosystem memory tied to the interactions between water biogeochemistry and lake sediment nutrients. To investigate how nutrient legacies and ecosystem memory control lake water quality dynamics, we coupled nutrient cycling and lake metabolism in a model to recreate long-term water quality of a eutrophic lake (Lake Mendota, Wisconsin, USA). We modeled long-term recovery of water quality under scenarios of nutrient load reduction and found that the rates and patterns of water quality improvement depended on changes in phosphorus (P) and organic carbon storage in the water column and sediments. Through scenarios of water quality improvement, we showed that water quality variables have distinct phases of change determined by the turnover rates of storage pools – an initial and rapid water quality improvement due to water column flushing, followed by a much longer and slower improvement as sediment P pools were slowly reduced. Water clarity, phytoplankton biomass, and hypolimnetic dissolved oxygen differed in their time responses. Water clarity and algal biomass improved within years of nutrient reductions, but hypolimnetic oxygen took decades to improve. Even with reduced catchment loading, recovery of Lake Mendota to a mesotrophic state may require decades due to nutrient legacies and long ecosystem memory.

Cayelan C. Carey

and 11 more

Oxygen availability is decreasing in many lakes and reservoirs worldwide, raising the urgency for understanding how anoxia (low oxygen) affects coupled biogeochemical cycling, which has major implications for water quality, food webs, and ecosystem functioning. Although the increasing magnitude and prevalence of anoxia has been documented in freshwaters globally, the challenges of disentangling oxygen and temperature responses have hindered assessment of the effects of anoxia on carbon, nitrogen, and phosphorus concentrations, stoichiometry (chemical ratios), and retention in freshwaters. The consequences of anoxia are likely severe and may be irreversible, necessitating ecosystem-scale experimental investigation of decreasing freshwater oxygen availability. To address this gap, we devised and conducted REDOX (the Reservoir Ecosystem Dynamic Oxygenation eXperiment), an unprecedented, seven-year experiment in which we manipulated and modeled bottom-water (hypolimnetic) oxygen availability at the whole-ecosystem scale in a eutrophic reservoir. Seven years of data reveal that anoxia significantly increased hypolimnetic carbon, nitrogen, and phosphorus concentrations and altered elemental stoichiometry by factors of 2-5 relative to oxic periods. Importantly, prolonged summer anoxia increased nitrogen export from the reservoir by six-fold and changed the reservoir from a net sink to a net source of phosphorus and organic carbon downstream. While low oxygen in freshwaters is thought of as a response to land use and climate change, results from REDOX demonstrate that low oxygen can also be a driver of major changes to freshwater biogeochemical cycling, which may serve as an intensifying feedback that increases anoxia in downstream waterbodies. Consequently, as climate and land use change continue to increase the prevalence of anoxia in lakes and reservoirs globally, it is likely that anoxia will have major effects on freshwater carbon, nitrogen, and phosphorus budgets as well as water quality and ecosystem functioning.
Global environmental science challenges in the limnological research and applications communities can only be advanced when harnessing the collective expertise and capabilities of the satellite remote sensing community and well-established in situ communities such as the Global Lake Ecological Observatory Network (GLEON). At first glance, the groups seem wildly divergent: GLEON is a grass-roots effort which has been active since 2005 and connects researchers and practitioners from around the world to ask and answer questions about lake ecosystems. Earth observing missions can take a decade to plan, build, and launch. NASA and ESA have different missions as space agencies: one primarily focused on exploration and basic research with a year-to-year appropriations cycle, while the other presents a long-term commitment to address societal needs through the Copernicus program Sentinel satellite series. The Surface Biology and Geology (SBG) mission is a future NASA satellite that will launch toward the end of this decade as part of the Earth Systems Observatory. Working together to advance the science of lake ecosystem response to climate change, each group brings different complementary strengths and assets to this societal challenge. Increasing access through open science and cloud computing are creating opportunities for better collaboration. We describe our strategy for international engagement between these groups – cultural and methodological differences aside – to derive new information, learn new insights, and expand the body of knowledge around these unique natural resources.

Kristin Vanderbilt

and 4 more

In this era of open data and reproducible science, graduate students need to learn where and how to publish their data and to be conversant with the challenges inherent when re-using someone else’s data. The Environmental Data Initiative partnered with UNM Libraries and Florida Coastal Everglades LTER to organize a 1-credit, semester-long distributed graduate seminar to learn if this approach could be an effective mechanism for transmitting such information. Each week during the Spring 2021 semester, an informatics specialist spoke remotely to students at University of New Mexico, Florida International University, and University of Wisconsin-Madison on topics ranging from FAIR principles to data security, team science to data provenance. Students prepared for the lecture with one or more readings, and in-class exercises reinforced the material covered. Student assignments included writing quality metadata for their own data and archiving their data in the EDI Repository. The capstone writing assignment, a data management plan for their own research project, allowed the students to integrate much of what they had learned. Student response to this class was positive, and students indicated that they learned a lot of immediately useful information without the course being a significant time-sink. The low registration numbers at UNM and FIU (6 and 7 students, respectively), however, where the seminar was not required, suggest a need to better inform both students and their advisors of the opportunity and the value provided by the training. Instructors also learned that it would be easier to create a cohesive flow to the course, without repetition, if the group of instructors took turns lecturing, rather than bringing in specialists on each subject. It was also apparent from student comments that many felt this information should be integrated, at an introductory level, into undergraduate classes or classes for new graduate students.