Richard SH Lee

and 9 more

Background The newly emerged SARS-CoV-2 possesses shared antigenic epitopes with other human coronaviruses. We investigated if COVID-19 vaccination or SARS-CoV-2 infection may boost cross-reactive antibodies to other human coronaviruses. Methods Pre- and post-vaccination sera from SARS-CoV-2 naïve healthy subjects who received three doses of the mRNA vaccine (BioNTech, BNT) or the inactivated vaccine (CoronaVac, CV) were used to monitor the level of cross-reactive antibodies raised against other human coronaviruses by enzyme-linked immunosorbent assay. In comparison, convalescent sera from COVID-19 patients with or without prior vaccination history were also tested. Pseudoparticle neutralization assay was performed to detect neutralization antibody against MERS-CoV. Results Among SARS-CoV-2 infection naïve subjects, BNT or CV significantly increased the anti-S2 antibodies against Betacoronaviruses (OC43 and MERS-CoV) but not Alphacoronaviruses (229E). The pre-vaccination antibody response to the common cold human coronaviruses did not negatively impact the post-vaccination antibody response to SARS-CoV-2. Cross-reactive antibodies that binds to the S2 protein of MERS-CoV were similarly detected from the convalescent sera of COVID-19 patients with or without vaccination history. However, these anti-S2 antibodies do not possess neutralizing activity in MERS-CoV pseudoparticle neutralisation tests. Conclusions Our results suggest that SARS-CoV-2 infection or vaccination may potentially modulate population immune landscape against previously exposed or novel human coronaviruses. The findings have implications for future sero-epidemiological studies on MERS-CoV.
The last influenza pandemic in 2009 emerged from swine and surveillance of swine influenza is important for pandemic preparedness. Movement of swine during husbandry, trade or marketing for slaughter provide opportunities for transfer and possible genetic reassortment of swine influenza viruses. Over 90% of the swine slaughtered at the central swine abattoir in Hong Kong are imported from farms located in multiple provinces in mainland China. There is opportunity for virus cross-infection during this transport and slaughter process. Of the 26,980 swabs collected in the slaughterhouse in Hong Kong from 5 th January 2012 to 15 th December 2016, we analyzed sequence data on influenza A (H3N2) virus isolates (n = 174) in conjunction with date of sampling and originating farm. Molecular epidemiology provided evidence of virus cross-infection between swine originating from different farms during transport and also evidence of a virus lineage persisting in a swine farm for over 2 years. We used virus serology and isolation data from 4,226 paired pig serum and nasal swabs collected from swine originating from Guangdong Province to compare the force of infection (FOI) during transport and within farms. The mean weekly FOI during transport was λ t = 0.0286 (95% CI = 0.0211-0.0391) while the weekly FOI in farms was λ f = 0.0089 (95% CI = 0.0084-0.0095), assuming a duration of stay in farm of 28 weeks, suggesting increased force of infection during the transport process. Potential risk factors for infection including the duration in transport, length of stay at slaughterhouse and farm-level seroprevalence were also assessed by multivariable logistic regression analysis. Transport may increase virus cross-infection rates and provide opportunities for virus reassortment potentially increasing zoonotic risk to those involved in the transportation and slaughtering processes.

Daniel Leung

and 29 more

Background Safety and immunogenicity of 3 doses of BNT162b2 and CoronaVac in adult and pediatric patients with inborn errors of immunity (IEIs) remain unknown. Intradermal vaccination may improve immunogenicity in immunocompromised patients. Our study (NCT04800133) aimed to determine the safety and immunogenicity in patients with IEIs receiving a 3-dose primary series of mRNA vaccine BNT162b2 (age 12+) or inactivated whole-virion vaccine CoronaVac (age 3+) in Hong Kong, including Omicron BA.1 neutralization, in a nonrandomized manner. Intradermal vaccination was also studied. Methods Thirty-nine patients were vaccinated, including 16 with homologous intramuscular 0.3ml BNT162b2 and 17 with homologous intramuscular 0.5ml CoronaVac. Two patients received 3 doses of intradermal 0.5ml CoronaVac, and 4 patients received 2 doses of intramuscular BNT162b2 and the third dose with intradermal BNT162b2. Adverse reactions and adverse events were tracked for 7 and 28 days after each dose. Antibody responses assessed included binding IgG antibody to wild-type (WT) spike receptor-binding domain (S-RBD IgG) and surrogate neutralization activity to WT and BA.1 viruses. T cell responses were examined by intracellular cytokine staining following stimulation with SARS-CoV-2 peptide pool(s). Results No safety concerns were identified. Inadequate antibody responses were found after 2 doses in patients with humoral immunodeficiencies and especially so against BA.1. Dose 3 of either vaccine increased S-RBD IgG response. T cell responses against SARS-CoV-2 antigens were detected in vaccinated IEI patients. Intradermal third dose vaccine led to high antibody response in 4 patients. Conclusions The primary vaccination series of BNT162b2 and CoronaVac in adults and children with IEIs should include 3 doses for optimal immunogenicity.