Emily Dziedzic

and 9 more

Species detection using eDNA is revolutionizing global capacity to monitor biodiversity. However, the lack of regional, vouchered, genomic sequence information—especially sequence information that includes intraspecific variation—creates a bottleneck for management agencies wanting to harness the complete power of eDNA to monitor taxa and implement eDNA analyses. eDNA studies depend upon regional databases of mitogenomic sequence information to evaluate the effectiveness of such data to detect and identify taxa. We created the Oregon Biodiversity Genome Project to create a database of complete, nearly error-free mitogenomic sequences for all of Oregon’s fishes. We have successfully assembled the complete mitogenomes of 313 specimens of freshwater, anadromous, and estuarine fishes representing 24 families, 55 genera, and 128 species and lineages. Comparative analyses of these sequences illustrate that many regions of the mitogenome are taxonomically informative, that the short (~150 bp) mitochondrial “barcode” regions typically used for eDNA assays do not consistently diagnose for species, and that complete single or multiple genes of the mitogenome are preferable for identifying Oregon’s fishes. This project provides a blueprint for other researchers to follow as they build regional databases, illustrates the taxonomic value and limits of complete mitogenomic sequences, and offers clues as to how current eDNA assays and environmental genomics methods of the future can best leverage this information.

Emily Dziedzic

and 9 more

Species detection using eDNA is revolutionizing the global capacity to monitor biodiversity. However, the lack of regional, vouchered, genomic sequence information—especially sequence information that includes intraspecific variation—creates a bottleneck for management agencies wanting to harness the complete power of eDNA to monitor taxa and implement eDNA analyses. eDNA studies depend upon regional databases of complete mitogenomic sequence information to evaluate the effectiveness of such data to differentiate, identify and detect taxa. We created the Oregon Biodiversity Genome Project working group to utilize recent advances in sequencing technology to create a database of complete, near error-free mitogenomic sequences for all of Oregon’s resident freshwater fishes. So far, we have successfully assembled the complete mitogenomes of 313 specimens of freshwater fish representing 7 families, 55 genera, and 129 (88%) of the 146 resident species and lineages. Our comparative analyses of these sequences illustrate that the short (~150 bp) mitochondrial “barcode” regions typically used for eDNA assays are not consistently diagnostic for species-level identification and that no single region is best for metabarcoding Oregon’s fishes. However, often-overlooked intergenic regions of the mitogenome such as the D-loop have the potential to reliably diagnose and differentiate species. This project provides a blueprint for other researchers to follow as they build regional databases. It also illustrates the taxonomic value and limits of complete mitogenomic sequences, and how current eDNA assays and the “PCR-free” environmental genomics methods of the future can best leverage this information.