Keren Yanuka-Golub

and 8 more

Submarine groundwater discharge (SGD) is a globally important process supplying nutrients and trace elements to the coastal environment, thus playing a pivotal role in sustaining marine primary productivity. Along with nutrients, groundwater also contains allochthonous microbes that are discharged from the terrestrial subsurface into the sea. Currently, little is known about the interactions between groundwater-borne and coastal seawater microbial populations, and their role upon introduction to coastal seawater populations. Here, we investigated seawater microbial abundance, activity and diversity in a site strongly influenced by SGD (in-situ observations), and through laboratory-controlled bottle incubations mimicking different mixing scenarios between SGD (either ambient or filtered through 0.1 µm/0.22 µm) and seawater. Our results demonstrate that the addition of <0.1 µm SGD stimulated heterotrophic activity and increased microbial abundance compared to control, whereas <0.22 µm filtration treatments induced primary productivity rates and Synechococcus growth. Amplicon sequencing of the 16S rRNA gene showed a strong shift from a SAR11-rich community in the reference SGD-unaffected coastal samples to a Rhodobacteraceae-dominated one in the <0.1 µm treatment, in agreement with their in-situ enrichment in the SGD field site. These results suggest that despite the significant nutrient input, microbes delivered by SGD may affect the abundance, activity and diversity of intrinsic microbes in coastal seawater. Our results highlight the cryptic interplay between groundwater and seawater microbes in coastal environments, which has important implications for carbon cycling.

Ximena Velasquez

and 7 more

Copepods provide a rich organic microenvironment allowing the settlement and proliferation of microorganisms, forming dynamic microbial hotspots in the oceans. Such symbiotic associations in the plankton were previously hypothesized to be especially developed in warm oligotrophic seas, as they have a potential role in enhancing nutrient availability in biologically-poor waters. Aiming to better understand how copepod microbiomes are shaped in an oligotrophic sea, we characterized microbiota associated with three dominant coastal epipelagic copepod species in the ultra-oligotrophic Eastern Mediterranean Sea using amplicon sequencing of the 16S rRNA gene. Our results show that copepod-associated microbial communities were host-specific rather than determined by seasonal environmental changes. In the filter-feeding copepod with a tendency to herbivory, Temora stylifera, microbial diversity was low and relatively stable throughout the year. In contrast, omnivorous copepods, the ambush-feeding Oithona nana and the mixed-feeding Centropages ponticus, harbored more diverse microbiomes dominated by transient taxa. We suggest that filter-feeding strategy and narrow food spectrum can limit copepod-microbe interactions, while the ambush and mixed feeding strategies combined with omnivory confer higher microbial diversity. Filter feeders may reduce the recruitment of opportunistic microbes by maintaining high fidelity associations, as indicated by the large number of core taxa in T. stylifera. We underline the importance of the copepod-microbe associations in nutrient-impoverished ecosystems, based on predicted enrichment of nitrogen metabolism in the core microbiome, mostly during summer when the shallow coastal waters are nitrogen-depleted.