Ludmila Sromek

and 9 more

Genetic analyses of host-specific parasites can elucidate the evolutionary histories and biological features of their hosts. Here, we used population-genomic analyses of ectoparasitic seal lice (Echinophthirius horridus) to shed light on the postglacial history of seals in the Arctic Ocean and the Baltic Sea region. One key question was the enigmatic origin of relict landlocked ringed seal populations in lakes Saimaa and Ladoga in northern Europe. We found that that lice of four postglacially diverged subspecies of the ringed seal (Pusa hispida) and Baltic gray seal (Halichoerus grypus), like their hosts, form genetically differentiated entities. Using coalescent-based demographic inference, we show that the sequence of divergences of the louse populations is consistent with the geological history of lake formation. In addition, local effective population sizes of the lice are generally proportional to the census sizes of their respective seal host populations. Genome-based reconstructions of long-term effective population sizes revealed clear differences among louse populations associated with gray vs. ringed seals, with apparent links to Pleistocene and Holocene climatic variation as well as to the isolation histories of ringed seal subspecies. Interestingly, our analyses also revealed ancient gene flow between the lice of Baltic gray and ringed seals, suggesting that the distributions of Baltic seals overlapped to a greater extent in the past than is the case today. Taken together, our results demonstrate how genomic information from specialized parasites with higher mutation and substitution rates than their hosts can potentially illuminate finer scale population genetic patterns than similar data from their hosts.

Tommi Nyman

and 9 more

Large areas of forests are annually damaged or destroyed by outbreaking insect pests. Understanding the factors that trigger and terminate such population eruptions has become crucially important, as plants, plant-feeding insects, and their natural enemies may respond differentially to the ongoing changes in the global climate. In northernmost Europe, climate-driven range expansions of the geometrid moths Epirrita autumnata and Operophtera brumata have resulted in overlapping and increasingly severe outbreaks. Delayed density-dependent responses of parasitoids are a plausible explanation for the ten-year population cycles of these moth species, but the impact of parasitoids on geometrid outbreak dynamics is unclear due to a lack of knowledge on the host ranges and prevalences of parasitoids attacking the moths in nature. To overcome these problems, we reviewed the literature on parasitism in the focal geometrid species in their outbreak range, and then constructed a DNA barcode reference library for all relevant parasitoid species based on reared specimens and sequences obtained from public databases. The combined parasitoid community of E. autumnata and O. brumata consists of 32 hymenopteran species, all of which can be reliably identified based on their barcode sequences. The curated barcode library presented here opens up new opportunities for estimating the abundance and community composition of parasitoids across populations and ecosystems based on mass barcoding and metabarcoding approaches. Such information can be used for elucidating the role of parasitoids in moth population control, possibly also for devising methods for reducing the extent, intensity, and duration of outbreaks.
Host-specialist parasites of endangered large vertebrates are in many cases more endangered than their hosts. In particular, low population densities and reduced among-host transmission rates are expected to lead to inbreeding within parasite infrapopulations living on single host individuals. Furthermore, spatial population structures of directly-transmitted parasites should be concordant with those of their hosts. Using population genomic approaches, we investigated inbreeding and population structure in a host-specialist seal louse (Echinophthirius horridus) infesting the Saimaa ringed seal (Phoca hispida saimensis), which is endemic to Lake Saimaa in Finland, and is one of the most endangered pinnipeds in the world. We conducted genome resequencing of pairs of lice collected from 18 individual Saimaa ringed seals throughout the Lake Saimaa complex. Our analyses showed high genetic similarity and inbreeding between lice inhabiting the same individual seal host, indicating low among-host transmission rates. Across the lake, genetic differentiation among individual lice was correlated with their geographic distance, and assignment analyses revealed a marked break in the genetic variation of the lice in the middle of the lake, indicating substantial population structure. These findings indicate that movements of Saimaa ringed seals across the main breeding areas of the fragmented Lake Saimaa complex may in fact be more restricted than suggested by previous population-genetic analyses of the seals themselves.