The South American temperate forests have been subjected to drastic past topographic and climatic changes during the Pliocene – Pleistocene linked to Andean orogeny and glacial cycles. These changes are common drivers of genetic structure and adaptation process. Embothrium coccineum, a member of the Proteaceae family and an emblematic tree of the South American temperate forest with a distribution spanning 20° of latitude, has been strongly affected by these topographic and climatic changes. Previous studies have shown that the species presents a marked genetic structure with distinct ecotypes described; yet, little is known about their adaptive genetic responses. The main goal of this study was to investigate the effects of historical and contemporary landscape features affecting the genetic diversity and connectivity of E. coccineum throughout its natural distribution. Using more than 2000 SNPs, two genetic groups (North and Center-South) that have diverged some 2.8 million years ago were observed. The level of genetic structure was higher between populations within the North genetic group than within the Center-South group. We propose that these contrasting patterns of genetic structure are related to differences in pollinator’s assemblage and evolutionary histories between genetic groups. Moreover, we observed the existence a strong patter of isolation by environment in E. coccineum, suggesting that selection could have leaded to adaptive divergence among localities. We propose that, within the Chilean temperate forest, the patterns of genetic variation in E. coccineum reflect both a Quaternary phylogenetic imprint and the impact of selection to the strong environmental gradient.

Oscar Huanel

and 9 more

Gracilaria chilensis is the main cultivated seaweed in Chile. The low genetic diversity observed in the Chilean population has been associated with the over-exploitation of natural beds and/or the founder effect that occurred during the post-glacial colonization from New Zealand. How these processes have affected its evolutionary trajectory before farming and incipient domestication is poorly understood. In this study, we used 2,232 SNPs to assess how the species evolutionary history in New Zealand (its region of origin), the founder effect linked to transoceanic dispersion and colonization of South America, and the recent over-exploitation of natural populations have influenced the genetic architecture of G. chilensis in Chile. The contrasting patterns of genetic diversity and structure observed between the two main islands in New Zealand attest to the important effects of Quaternary glacial cycles on G. chilensis. ABC analyses indicated that Chatham Island and South America were colonized independently near the end of the Last Glacial Maximum and emphasized the importance of coastal and oceanic currents during that period. Furthermore, ABC analyses inferred the existence of a recent and strong genetic bottleneck in Chile, matching the period of over-exploitation of the natural beds during the 1970s, followed by rapid demographic expansion linked to active clonal propagation used in farming. Recurrent genetic bottlenecks strongly eroded the genetic diversity of G. chilensis prior to its cultivation, raising important challenges for the management of genetic resources in this incipiently domesticated species.