Alberto Pepe

and 1 more

By protein structure prediction (PSP) we refer to the prediction of the 3-dimensional (3D) folding of a protein, known as tertiary structure, starting from its amino acid sequence, known as primary structure. The state-of-the-art in PSP is currently achieved by complex deep learning pipelines that require several input features extracted from amino acid sequences. It has been demonstrated that features that grasp the relative orientation of amino acids in space positively impacts the prediction accuracy of the 3D coordinates of atoms in the protein backbone. In this paper, we demonstrate the relevance of Geometric Algebra (GA) in instantiating orientational features for PSP problems. We do so by proposing two novel GA-based metrics which contain information on relative orientations of amino acid residues. We then employ these metrics as an additional input features to a Graph Transformer (GT) architecture to aid the prediction of the 3D coordinates of a protein, and compare them to classical angle-based metrics. We show how our GA features yield comparable results to angle maps in terms of accuracy of the predicted coordinates. This is despite being constructed from less initial information about the protein backbone. The features are also fewer and more informative, and can be (i) closely associated to protein secondary structures and (ii) more readily predicted compared to angle maps. We hence deduce that GA can be employed as a tool to simplify the modeling of protein structures and pack orientational information in a more natural and meaningful way.

Alberto Pepe

and 2 more

Many problems in computer vision today are solved via deep learning. Tasks like pose estimation from images, pose estimation from point clouds or structure from motion can all be formulated as a regression on rotations. However, there is no unique way of parametrizing rotations mathematically: matrices, quaternions, axis-angle representation or Euler angles are all commonly used in the field. Some of them, however, present intrinsic limitations, including discontinuities, gimbal lock or antipodal symmetry. These limitations may make the learning of rotations via neural networks a challenging problem, potentially introducing large errors. Following recent literature, we propose three case studies: a sanity check, a pose estimation from 3D point clouds and an inverse kinematic problem. We do so by employing a full geometric algebra (GA) description of rotations. We compare the GA formulation with a 6D continuous representation previously presented in the literature in terms of regression error and reconstruction accuracy. We empirically demonstrate that parametrizing rotations as bivectors outperforms the 6D representation. The GA approach overcomes the continuity issue of representations as the 6D representation does, but it also needs fewer parameters to be learned and offers an enhanced robustness to noise. GA hence provides a broader framework for describing rotations in a simple and compact way that is suitable for regression tasks via deep learning, showing high regression accuracy and good generalizability in realistic high-noise scenarios.