Jordan Cuff

and 5 more

1. Generalist invertebrate predators are sensitive to weather conditions, but the relationship between their trophic interactions and weather is poorly understood. This study investigates how weather affects the identity and frequency of spider trophic interactions as mediated by prey community structure, web characteristics and density-independent prey choice. 2. Spiders and their locally available prey were collected from barley fields in Wales, UK from April to September 2017-2018. The gut contents of 300 spiders were screened using DNA metabarcoding, analysed via multivariate models, and compared against prey availability using null models. 3. Spiders' trophic interactions changed over time and with weather conditions, primarily related to concomitant changes in their prey communities. Spiders did, however, appear to mitigate the effects of structural changes in prey communities through changing prey preferences according to prevailing weather conditions, possibly facilitated by adaptive web construction. 4. Using these findings, we demonstrate that prey choice data collected under different weather conditions can be used to refine inter-annual predictions of spider trophic interactions, although prey abundance was secondary to diversity in driving the diet of these spiders. By improving our understanding of the interaction between trophic interactions and weather, we can better predict how ecological networks are likely to change in response to variation in weather conditions and, more urgently, global climate change.

Ewan Stenhouse

and 8 more

Understanding the role diet plays in the structure of food webs is vital, and dietary knowledge is key for conservation management success. There is limited knowledge of the diets of woodland bird species, due largely to difficulties in accurately identifying plant and invertebrate taxa being consumed. Here, we show the effectiveness of multi-marker faecal metabarcoding to provide the most in-depth dietary analysis of a generalist passerine, the Hawfinch (Coccothraustes coccothraustes, Linnaeus), to date. Faecal samples were obtained from 2016-2019 from Hawfinch populations prior to and during the breeding season throughout the UK. DNA was extracted from 263 samples and amplified using Internal Transcribed Spacer 2 (ITS2) and cytochrome C oxidase subunit I (COI) barcodes. Using high-throughput sequencing (HTS), we identified 49 and 97 ITS2 and COI zero radius operational taxonomic units (zOTUs) respectively which equated to reputed dietary items. The herbivorous element of Hawfinch diet was dominated by naturally occurring taxa such as beech (Fagus sylvatica, Linnaeus), hornbeam (Carpinus betulus, Linnaeus) and oak (Quercus sp., Linnaeus). The most taxon rich and commonly recorded invertebrate taxon identified was Lepidoptera. We found Hawfinch diet varied spatially, as well as between sexes. Hawfinch showed broad dietary plasticity and utilised multiple resources within their foraging environments. Our study shows the potential of multi-marker DNA metabarcoding to reveal subtle dietary differences, but also highlights the challenges of studying omnivorous species using metabarcoding methods.