Laura McDuffie

and 9 more

Many populations of long-distance migrant shorebirds are declining rapidly. Since the 1970s, the Lesser Yellowlegs (Tringa flavipes) has experienced a pronounced reduction in abundance of ~63%. The potential causes of the species’ decline are complex and interrelated yet understanding the timing of migration and seasonal routes used by this species will aid in directing conservation planning to address potential threats. During 2018–2021, we tracked 118 adult Lesser Yellowlegs using GPS satellite tags deployed on birds from five breeding and two migratory stopover locations spanning the boreal forest of North America from Alaska to eastern Canada. Our objectives were to quantify migratory connectivity and identify key stopover and non-breeding locations. Individuals tagged in Alaska and central Canada followed similar southbound migratory routes through the Prairie Pothole Region of North America, whereas birds tagged in eastern Canada completed multi-day transoceanic flights covering distances of >4,000 km across the Atlantic between North and South America. Upon reaching their non-breeding locations, Lesser Yellowlegs populations overlapped, resulting in weak migratory connectivity. Lastly, freshwater and agricultural habitats of the Prairie Pothole region supported the highest proportion of Lesser Yellowlegs during southbound migration. Our findings suggest that while Lesser Yellowlegs travel long distances and traverse numerous political boundaries each year, the breeding population from which an individual originates likely has the greatest influence on which threats birds experience during migration. Further, the species’ dependence on wetlands in agricultural landscapes during migration may make them vulnerable to threats related to agricultural practices, such as pesticide exposure.

Jesse Conklin

and 9 more

Present-day ecology and population structure are the legacies of past climate and habitat perturbations, and this is particularly true for species that are widely distributed at high latitudes. The red knot, Calidris canutus, is an arctic-breeding, long-distance migratory shorebird with six recognized subspecies defined by differences in morphology, migration behavior, and annual-cycle phenology, in a global distribution thought to have arisen just since the Last Glacial Maximum (LGM). We used nextRAD sequencing of 10,881 single-nucleotide polymorphisms (SNPs) to assess the neutral genetic structure and phylogeographic history of 172 red knots representing all known global breeding populations. Using population genetics approaches, including model-based scenario-testing in an approximate Bayesian computation (ABC) framework, we infer that red knots derive from two main lineages that diverged ca. 34,000 years ago, and thus persisted at the LGM in both Palearctic and Nearctic refugia, followed by at least two instances of secondary contact and admixture. In two flyways, we detected clear genetic structure between population pairs with similar migrations and substantial geographic overlap in the non-breeding season. Conversely, other populations were only weakly differentiated despite clearly divergent migratory phenotypes and little or no apparent contact throughout the annual cycle. In general, the magnitude of genetic differentiation did not match that of phenotypic differences among populations, suggesting that flyway-specific phenotypes developed quite rapidly and do not necessarily impose barriers to gene flow. Our results suggest that population structure and migratory phenotypes in red knots arose from a complex interplay among phylogeography, plasticity, and selective processes.