Farshid Rahmani

and 5 more

Stream water temperature (T) is a variable of critical importance and decision-making relevance to aquatic ecosystems, energy production, and human’s interaction with the river system. Here, we propose a basin-centric stream water temperature model based on the long short-term memory (LSTM) model trained over hundreds of basins over continental United States, providing a first continental-scale benchmark on this problem. This model was fed by atmospheric forcing data, static catchment attributes and optionally observed or simulated discharge data. The model achieved a high performance, delivering a high median root-mean-squared-error (RMSE) for the groups with extensive, intermediate and scarce temperature measurements, respectively. The median Nash Sutcliffe model efficiency coefficients were above 0.97 for all groups and above 0.91 after air temperature was subtracted, showing the model to capture most of the temporal dynamics. Reservoirs have a substantial impact on the pattern of water temperature and negative influence the model performance. The median RMSE was 0.69 and 0.99 for sites without major dams and with major dams, respectively, in groups with data availability larger than 90%. Additional experiments showed that observed or simulated streamflow data is useful as an input for basins without major dams but may increase prediction bias otherwise. Our results suggest a strong mapping exists between basin-averaged forcings variables and attributes and water temperature, but local measurements can strongly improve the model. This work provides the first benchmark and significant insights for future effort. However, challenges remain for basins with large dams which can be targeted in the future when more information of withdrawal timing and water ponding time were accessible.

Farshid Rahmani

and 4 more

Stream water temperature is considered a “master variable” in environmental processes and human activities. Existing process-based models have difficulties with defining true equation parameters, and sometimes simplifications like assuming constant values influence the accuracy of results. Machine learning models are a highly successful tool for simulating stream temperature, but it is challenging to learn about processes and dynamics from their success. Here we integrate process-based modeling (SNTEMP model) and machine learning by building on a recently developed framework for parameter learning. With this framework, we used a deep neural network to map raw information (like catchment attributes and meteorological forcings) to parameters, and then inspected and fed the results into SNTEMP equations which we implemented in a deep learning platform. We trained the deep neural network across many basins in the conterminous United States in order to maximize the capturing of physical relationships and avoid overfitting. The presented framework has the ability of providing dynamic parameters based on the response of basins to meteorological conditions. The goal of this framework is to minimize the differences between stream temperature observations and SNTEMP outputs in the new platform. Parameter learning allows us to learn model parameters on large scales, providing benefits in efficiency, performance, and generalizability through applying global constraints. This method has also been shown to provide more physically-sensible parameters due to applying a global constraint. This model improves our understanding of how to parameterize the physical processes related to water temperature.