Pierre Lesturgie

and 2 more

We investigated the evolutionary history of the grey reef shark (Carcharhinus amblyrhynchos) in the Indo-Pacific (IP) by harnessing the power of thousands of RAD-seq loci sequenced in 175 individuals across its range. We bring strong evidences of the occurrence of a range expansion (RE) originating close to the Indo-Australian Archipelago (IAA) from which two stepping-stone waves (east and westward) started, colonizing almost the entire IP. Consequently, the demographic history of C. amblyrhynchos is best explained by a meta-population model, for which we estimated a homogenous connectivity throughout its range (Nm~10 per generation) by means of coalescent modeling coupled with an Approximate Bayesian Computation framework. An isolation by distance model further highlights the absence of either genetic barriers or preferential migration corridors, despite the dependency of C. amblyrhynchos from coral reefs occurrence. This is consistent with the long-distance swims observed, suggesting that the strong genetic structure at the IP scale (FST~0.56 between its ends) is rather the consequence of its large current distribution. We contrasted these results with those previously obtained for the sympatric but strictly lagoon-associated Carcharhinus melanopterus, a species well known for its restricted dispersal ability. While C. melanopterus exhibits a similar RE dynamic, it is characterized by stronger genetic structure and a non-homogeneous connectivity largely dependent on local coral reefs availability. The comparison between the two species sheds new light on shark evolution, emphasizing the role of IAA as source of biodiversity and of dispersal ability in shaping the extent of population structure and genetic diversity.

Pierre Lesturgie

and 2 more

Dispersal abilities play a crucial role in shaping the extent of population genetic structure, with more mobile species being panmictic over large geographic ranges and less mobile ones organized in meta-populations exchanging migrants to different degrees. In turn, population structure directly influences the coalescent pattern of the sampled lineages, but the consequences on the estimated variation of the effective population size (Ne) over time obtained by means of unstructured demographic models remain poorly understood. However, this knowledge is crucial for biologically interpreting the observed Ne trajectory and further devising conservation strategies in endangered species. Here we investigated the demographic history of four shark species (Carharhinus melanopterus, Carharhinus limbatus, Carharhinus amblyrhynchos, Galeocerdo cuvier) with different degrees of endangered status and life history traits related to dispersal distributed in the Indo-Pacific and sampled off New Caledonia. We compared several evolutionary scenarios representing both structured (meta-population) and unstructured models and then inferred the Ne variation through time. By performing extensive coalescent simulations, we provided a general framework relating the underlying population structure and the observed Ne dynamics. On this basis, we concluded that the recent decline observed in three out of the four considered species when assuming unstructured demographic models can be explained by the presence of population structure. Furthermore, we also demonstrated the limits of the inferences based on the sole site frequency spectrum and warn that statistics based on linkage disequilibrium will be needed to exclude recent demographic events affecting meta-populations.

Floriaan Devloo-Delva

and 36 more

Understanding the population structure of a species is important to accurately assess its conservation status and manage the risk of local extinction. The Bull Shark (Carcharhinus leucas) faces varying levels of exploitation around the world due to its coastal distribution. Information regarding population connectivity is crucial to evaluate its conservation status and local fishing impacts. In this study, we sampled 922 putative Bull Sharks from 19 locations in the first global assessment of population structure of this cosmopolitan species. Using a recently developed DNA-capture approach (DArTcap), samples were genotyped for 3,400 nuclear markers. Additionally, full mitochondrial genomes of 384 Indo-Pacific samples were sequenced. Reproductive isolation was found between and across ocean basins (eastern Pacific, western Atlantic, eastern Atlantic, Indo-West Pacific) with distinct island populations in Japan and Fiji. Bull Sharks appear to maintain reproductive connectivity using shallow coastal waters as dispersal corridors, whereas large oceanic distances and historical land-bridges act as barriers. Females tend to return to the same area for reproduction, making them more susceptible to local threats and an important focus for management actions. Given these behaviours, the exploitation of Bull Sharks from insular populations, such as Japan and Fiji, may instigate local decline that cannot readily be replenished by immigration, which can in turn affect ecosystem dynamics and functions. These data also supported the development of a genetic panel to ascertain the population of origin, which will be useful in monitoring the trade of fisheries products and assessing population-level impacts of this harvest.

Pierre Lesturgie

and 7 more

Designing appropriate management plans requires knowledge of both the dispersal ability and what has shaped the current distribution of the species under consideration. Here we investigated the evolutionary history of the endangered grey reef shark (Carcharhinus amblyrhynchos) across its range by sequencing thousands of RAD-seq loci in 173 individuals in the Indo-Pacific (IP) . We first bring evidence of the occurrence of a range expansion (RE) originating close to the Indo-Australian Archipelago (IAA) where two stepping-stone waves (east and westward) colonized almost the entire IP. Coalescent modeling additionally highlighted a homogenous connectivity (Nm~10 per generation) throughout the range, and an isolation by distance model suggested the absence of barriers to dispersal despite the affinity of C. amblyrhynchos to coral reefs. This coincides with long-distance swims previously recorded, suggesting that the strong genetic structure at the IP scale (FST ~ 0.56 between its ends) is the consequence of its broad current distribution and organization in a large number of demes. Our results strongly suggest that management plans for the grey reef shark should be designed on a range-wide rather than a local scale due to its continuous genetic structure. We further contrasted these results with those obtained previously for the sympatric but strictly lagoon-associated Carcharhinus melanopterus, known for its restricted dispersal ability. C. melanopterus exhibits similar RE dynamic, but is characterized by stronger genetic structure and a non-homogeneous connectivity largely dependent on local coral reefs availability. This sheds new light on shark evolution, emphasizing the roles of IAA as source of biodiversity and of life history traits in shaping the extent of genetic structure and diversity.

Pierre Lesturgie

and 2 more

Dispersal abilities play a crucial role in shaping the extent of population genetic structure, with more mobile species being panmictic over large geographic ranges and less mobile ones organized in meta-populations exchanging migrants to different degrees. In turn, population structure directly influences the coalescence pattern of the sampled lineages, but the consequences on the estimated variation of the effective population size (Ne) over time obtained by means of unstructured demographic models remain poorly understood. However, this knowledge is crucial for biologically interpreting the observed Ne trajectory and further devising conservation strategies in endangered species. Here we investigated the demographic history of four shark species (Carharhinus melanopterus, Carharhinus limbatus, Carharhinus amblyrhynchos, Galeocerdo cuvier) with different degrees of endangered status and life history traits related to dispersal distributed in the Indo-Pacific and sampled off New Caledonia. We compared several evolutionary scenarios representing both structured (meta-population) and unstructured models and then inferred the Ne variation through time. By performing extensive coalescent simulations, we provided a general framework relating the underlying population structure and the observed Ne dynamics. On this basis, we concluded that the recent decline observed in three out of the four considered species when assuming unstructured demographic models can be explained by the presence of population structure. Furthermore, we also demonstrated the limits of the inferences based on the sole site frequency spectrum and warn that statistics based on linkage disequilibrium will be needed to exclude recent demographic events affecting meta-populations.