Gurukripa Kowlgi

and 13 more

Aims: The MicraTM transcatheter pacing system (TPS) (Medtronic) is the only leadless pacemaker that promotes atrioventricular (AV) synchrony via accelerometer-based atrial sensing. Data regarding the real-world experience with this novel system are currently lacking. We sought to characterize patients undergoing MicraTM -AV implants, describe percentage AV synchrony achieved, and analyze the causes for suboptimal AV synchrony. Methods: In this retrospective cohort study, electronic medical records from 56 consecutive patients undergoing MicraTM -AV implants at the Mayo Clinic sites in Minnesota, Florida, and Arizona with a minimum follow-up of 3 months were reviewed. Demographic data, comorbidities, echocardiographic data, and clinical outcomes were compared among patients with and without atrial synchronous-ventricular pacing (AsVP) ≥70%. Results: Fifty-six percent of patients achieved AsVP ≥70%. Patients with adequate AsVP had smaller body mass indices, a lower proportion of congestive heart failure and pulmonary hypertension. Echocardiographic parameters and procedural characteristics were similar across the two groups. Active device troubleshooting was associated with higher AsVP. The likely reasons for low AsVP were persistent atrial arrhythmias, small A4-wave amplitude, and inadequate device reprogramming. Importantly, in patients with low AsVP, subjective clinical worsening was not noted during follow-up. Conclusion: With the increasing popularity of leadless PM, it is paramount for device implanting teams to be familiar with common predictors of AV synchrony and troubleshooting with MicraTM -AV devices.

Fouad Khalil

and 13 more

Background: Data regarding ventricular tachycardia (VT) or premature ventricular complex (PVC) ablation following MVS is limited.) CA can be challenging given perivalvular substrate in the setting of mitral annuloplasty or prosthetic valves. Objective: To investigate the characteristics, safety, and outcomes of radiofrequency catheter ablation (CA) in patients with prior mitral valve surgery (MVS) and ventricular arrhythmias (VA). Methods: We identified consecutive patients with prior MVS who underwent CA for VT or PVC between January 2013- December 2018. We investigated the mechanism of arrhythmia, ablation approach, peri-operative complications, and outcomes. Results: In our cohort of 31 patients (77% men, mean age 62.3±10.8 years, left ventricular ejection fraction 39.2±13.9%) with prior MVS underwent CA (16 VT; 15 PVC). Access to the left ventricle was via transseptal approach in 17 patients, and a retrograde aortic approach was used in 13 patients. A combined transseptal and retrograde aortic approach was used in one patient, and a percutaneous epicardial approach was combined with trans-septal approach in 1patient. Heterogenous scar regions were present in 94% of VT patients and scar-related reentry was the dominant mechanism of VT. Clinical VA substrates involved the peri-mitral area in 6 patients with VT and 5 patients with PVC ablation. No procedure-related complications were reported. The overall recurrence-free rate at 1-year was 72.2%; 67% in the VT group and 78% in the PVC group. No arrhythmia-related death was documented on long-term follow-up. Conclusion: CA of VAs can be performed safely and effectively in patients with MVS

Ian Crozier

and 12 more

Background: Transvenous implantable cardiac defibrillators (TV ICD) provide life-saving therapy for millions of patients worldwide. However, they are susceptible to several potential short- and long- term complications including cardiac perforation and pneumothorax, lead dislodgement, venous obstruction, and infection. The extravascular ICD (EV ICD) system’s novel design and substernal implant approach avoids the risks associated with TV ICDs while still providing pacing features and similar generator size to TV ICDs. Study Design: The EV ICD pivotal study is a prospective, multi-center, single-arm, non-randomized, pre-market clinical study designed to examine the safety and acute efficacy of the system. This study will enroll up to 400 patients with a Class I or IIa indication for implantation of an ICD. Implanted subjects will be followed up to approximately 3.5 years, depending on when the patient is enrolled. Objective: The clinical trial is designed to demonstrate safety and effectiveness of the EV ICD system in human use. The safety endpoint is freedom from major complications, while the efficacy endpoint is defibrillation success. Both endpoints will be assessed against prespecified criteria. Additionally, this study will evaluate antitachycardia pacing (ATP) performance, electrical performance, extracardiac pacing sensation, asystole pacing, appropriate and inappropriate shocks, as well as a summary of adverse events. Conclusion: The EV ICD pivotal study is designed to provide clear evidence addressing the safety and efficacy performance of the EV ICD System.