Enrique Celemín

and 13 more

The Harbour porpoise (Phocoena phocoena) is a highly mobile cetacean species which primarily occurs in coastal and shelf waters across the Northern hemisphere. It inhabits heterogeneous seascapes that vary broadly in salinity and temperature. Here we produced 74 whole genomes at intermediate coverage to study Harbour porpoise’s evolutionary history and investigate the role of local adaptation in the diversification into subspecies and populations. We identified ~6 million high quality SNPs sampled at 8 localities across the North Atlantic and adjacent waters, which we used for population structure, demographic, and genotype-environment association analyses. Our results support a genetic differentiation between three subspecies, and three distinct populations within the subspecies P.p. phocoena: Atlantic, Belt Sea and Proper Baltic Sea. Effective population size and Tajima’s D levels suggest a population contraction in both Black Sea and Iberian porpoises while a population expansion in the P.p. phocoena populations. Phylogenetic trees indicate a post-glacial colonization of Harbour porpoises from a southern refugium. Genotype-environment association analysis identified salinity as a major driver in genomic variation and we identified candidate genes putatively underlying adaptation to different salinity levels. Our study highlights the value of whole genome resequencing to unravel subtle population structure in highly mobile species and shows how strong environmental gradients and local adaptation may lead to population differentiation. The results have great conservation implications as we found major levels of inbreeding and low genetic diversity in the endangered Black Sea subspecies and identified the critically endangered Proper Baltic Sea porpoises as a separate population.

Binia De Cahsan

and 10 more

Northern range margin populations of the European fire-bellied toad (Bombina bombina) have rapidly declined during recent decades. Extensive agricultural land use has fragmented the landscape, leading to habitat disruption and loss, as well as eutrophication of ponds. In Northern Germany (Schleswig-Holstein) and Southern Sweden, this decline resulted in decreased gene flow from surrounding populations, low genetic diversity, and a putative reduction in adaptive potential, leaving populations vulnerable to future environmental and climatic changes. Previous studies using mitochondrial control region and nuclear transcriptome-wide SNP data detected introgressive hybridization in multiple northern B. bombina populations after presumed illegal release of toads from Austria. Here, we determine the impact of this introgression by comparing the body conditions (as a proxy for fitness) of introgressed and non-introgressed populations, and the genetic consequences in two candidate genes for putative local adaptation (the MHC II gene as part of the adaptive immune system and the stress response gene HSP70 kDa). We detected regional differences in body condition. We observed significantly elevated levels of within individual MHC allele counts in introgressed Swedish populations, associated with a tendency towards higher body weight, relative to regional non-introgressed populations. These differences were not observed among introgressed and non-introgressed German populations. Genetic diversity in both MHC and HSP was generally lower in northern than southern populations. Our study sheds light on the potential benefits of translocations of more distantly related conspecifics as a means to increase adaptive genetic variability and fitness of struggling range margin populations without distortion of local adaptation.