David Price

and 67 more

Background Patients with severe asthma may present with characteristics representing overlapping phenotypes, making them eligible for more than one class of biologic. Our aim was to describe the profile of severe adult asthma patients eligible for both anti-IgE and anti-IL5/5R and to compare the effectiveness of both classes of treatment in real life. Methods This was a prospective cohort study that included adult severe asthma patients from 22 countries enrolled into the International Severe Asthma registry (ISAR) who were eligible for both anti-IgE and anti-IL5/5R. The effectiveness of anti-IgE and anti-IL5/5R was compared in a 1:1 matched cohort. Exacerbation rate was the primary effectiveness endpoint. Secondary endpoints included long-term-oral corticosteroid (LTOCS) use, asthma-related emergency room (ER) attendance and hospital admissions. Results In the matched analysis (n=350/group), the mean annualized exacerbation rate decreased by 47.1% in the anti-IL5/5R group and 38.7% in the anti-IgE group. Patients treated with anti-IL5/5R were less likely to experience a future exacerbation (adjusted IRR 0.76; 95% CI 0.64, 0.89; p<0.001) and experienced a greater reduction in mean LTOCS dose than those treated with anti-IgE (37.44% vs 20.55% reduction; p=0.023).) There was some evidence to suggest that patients treated with anti-IL5/5R experienced fewer asthma-related hospitalizations (IRR 0.64; 95% CI 0.38, 1.08), but not ER visits (IRR 0.94, 95% CI 0.61, 1.43). Conclusions In real life, both anti-IgE and anti-IL5/5R improve asthma outcomes in patients eligible for both biologic classes, however anti-IL5/5R was superior in terms of reducing asthma exacerbations and LTOCS use.

Hajar Ali

and 10 more

ABSTRACT Background: Neural mechanisms may play an important role in non-eosinophilic asthma. This study compared airway sensory nerve reactivity, using capsaicin challenge, in eosinophilic and non-eosinophilic asthma and non-asthmatics. Methods: Thirty-eight asthmatics and nineteen non-asthmatics (aged 14-21 years) underwent combined hypertonic saline challenge/sputum induction, exhaled nitric oxide (FeNO), atopy, and spirometry tests, followed by capsaicin challenge. Eosinophilic (EA) and non-eosinophilic asthma (NEA) were defined using a sputum eosinophil cut-point of 2.5%. Airway hyperreactivity (AHR) was defined as a ≥15% drop in FEV1 during saline challenge. Sensory nerve reactivity was defined as the lowest capsaicin concentration that evoked 5 (C5) coughs. Results: Non-eosinophilic asthmatics (n=20) had heightened capsaicin sensitivity (lower C5) compared to non-asthmatics (n=19) (geometric mean C5: 58.3μM, 95% confidence interval 24.1-141.5 vs 193.6μM, 82.2-456.0; p<0.05). There was a similar (but non-significant) difference in capsaicin sensitivity in NEA compared with EA (n=18), (58.3μM, 24.1-141.5 vs 191.0μM, 70.9-514.0; p=0.07). FEV1 was significantly reduced from baseline following capsaicin inhalation in both asthmatics and non-asthmatics but no differences were found between subgroups. No associations with capsaicin sensitivity and atopy, sputum eosinophils, blood eosinophils, asthma control, or treatment were observed. Conclusion: Non-eosinophilic asthma, but not eosinophilic asthma, showed enhanced capsaicin sensitivity compared with non-asthmatics. Sensory nerve reactivity may therefore play an important role in the pathophysiology of non-eosinophilic asthma.