Kelly Phillips

and 1 more

Beneficial mutations can become costly following an environmental change. Compensatory mutations can relieve these costs, while not affecting the selected function, so that the benefits are retained if the environment shifts back to be similar to the one in which the beneficial mutation was originally selected. Compensatory mutations have been extensively studied in the context of antibiotic resistance, responses to specific genetic perturbations and in the determination of interacting gene network components. Few studies have focused on the role of compensatory mutations during more general adaptation, especially as the result of selection in fluctuating environments where adaptations to different environment components may often involve tradeoffs. We examine if costs of a mutation in lacI, which deregulated expression of the lac operon in evolving populations of Escherichia coli bacteria, was compensated. This mutation occurred in multiple replicate populations selected in environments that fluctuated between growth on lactose, where the mutation was beneficial, and on glucose, where it was deleterious. We found that compensation for the cost of the lacI mutation was rare, but, when it did occur, it did not negatively affect the selected benefit. Compensation was not more likely to occur in a particular evolution environment. Compensation has the potential to remove pleiotropic costs of adaptation, but its rarity indicates that the circumstances to bring about the phenomenon may be peculiar to each individual or impeded by other selected mutations.