Seung-Sub Choi

and 6 more

During hybrid speciation, homoeologues combine in a single genome. Homoeologue expression bias (HEB) occurs when one homoeologue has higher gene expression than another. HEB has been well characterized in plants but rarely investigated in animals, especially invertebrates. Consequently, we have little idea as to the role that HEB plays in allopolyploid invertebrate genomes. If HEB is constrained by features of the parental genomes, then we predict repeated evolution of similar HEB patterns among hybrid genomes formed from the same parental lineages. To address this, we reconstructed the history of hybridization between the New Zealand stick insect genera Acanthoxyla and Clitarchus using a high-quality genome assembly from Clitarchus hookeri to call variants and phase alleles. These analyses revealed the formation of three independent diploid and triploid hybrid lineages between these genera. RNA sequencing revealed a similar magnitude and direction of HEB among these hybrid lineages, and we observed that many enriched functions and pathways were also shared among lineages, consistent with repeated evolution due to parental genome constraints. In most lineages, a slight majority of the genes involved in mitochondrial function showed HEB towards the maternal homoeologues, consistent with only weak effects of mitonuclear incompatibility. We also observed a proteasome functional enrichment in most lineages and hypothesize this may result from the need to maintain proteostasis in hybrid genomes. Reference bias was a pervasive problem, and we caution against relying on HEB estimates from a single parental reference genome.

Andrew Dopheide

and 6 more

Despite recent advances in high-throughput DNA sequencing technologies, a lack of locally relevant DNA reference databases may limit the potential for DNA-based monitoring of biodiversity for conservation and biosecurity applications. Museums and national collections represent a compelling source of authoritatively identified genetic material for DNA database development yet obtaining DNA barcodes from long-stored specimens may be difficult due to sample degradation. We demonstrate a sensitive and efficient laboratory and bioinformatic process for generating DNA barcodes from hundreds of invertebrate specimens simultaneously via the Illumina MiSeq system. Using this process, we recovered full-length (334) or partial (105) COI barcodes from 439 of 450 (98 %) national collection-held invertebrate specimens. This included full-length barcodes from 146 specimens which produced low-yield DNA and no visible PCR bands, and which produced as little as a single sequence per specimen, demonstrating high sensitivity of the process. In many cases, the identity of the most abundant sequences per specimen were not the correct barcodes, necessitating the development of a taxonomy-informed process for identifying correct sequences among the sequencing output. The recovery of only partial barcodes for some taxa indicates a need to refine certain PCR primers. Nonetheless, our approach represents a highly sensitive, accurate, and efficient method for targeted reference database generation, providing a foundation for DNA-based assessments and monitoring of biodiversity.

Ann McCartney

and 7 more

We used long read sequencing data generated from Knightia excelsaI R.Br, a nectar producing Proteaceae tree endemic to Aotearoa New Zealand, to explore how sequencing data type, volume and workflows can impact final assembly accuracy and chromosome construction. Establishing a high-quality genome for this species has specific cultural importance to Māori, the indigenous people, as well as commercial importance to honey producers in Aotearoa New Zealand. Assemblies were produced by five long read assemblers using data subsampled based on read lengths, two polishing strategies, and two Hi-C mapping methods. Our results from subsampling the data by read length showed that each assembler tested performed differently depending on the coverage and the read length of the data. Assemblies that used longer read lengths (>30 kb) and lower coverage were the most contiguous, kmer and gene complete. The final genome assembly was constructed into pseudo-chromosomes using all available data assembled with FLYE, polished using Racon/Medaka/Pilon combined, scaffolded using SALSA2 and AllHiC, curated using Juicebox, and validated by synteny with Macadamia. We highlighted the importance of developing assembly workflows based on the volume and type of sequencing data and establishing a set of robust quality metrics for generating high quality assemblies. Scaffolding analyses highlighted that problems found in the initial assemblies could not be resolved accurately by utilizing Hi-C data and that scaffolded assemblies were more accurate when the underlying contig assembly was of higher accuracy. These findings provide insight into what is required for future high-quality de-novo assemblies of non-model organisms.