Niklas Dreyer

and 7 more

The enigmatic “y-larvae” (Pancrustacea: Facetotecta) still have an incompletely understood lifecycle, and their adult forms remain unknown despite their discovery more than 100 years ago and their documented global occurrence from shallow waters to the deep-sea. Only two of the 17 formally described species, all based on larval stages, have been investigated using an integrative taxonomic approach that, besides providing descriptions of the morphology of the naupliar and cyprid stages, also made use of exuvial voucher material and DNA barcodes. To improve our knowledge about the systematics and phylogenetics of y-larvae, we developed a novel protocol that maximizes the amount of morphological, ecological, and molecular data that can be harvested from single individuals of these tiny larvae. This revolves around single larva barcoding, and includes daily imaging of y-nauplii reared in culture dishes, mounting of their last naupliar exuviae on a slide as a reference voucher, live imaging of the y-cyprid instar that follows, and fixation, DNA extraction, amplification, and sequencing of the y-cyprid specimen. By developing and testing a suite of new primers for both nuclear and mitochondrial protein-coding and ribosomal genes, we estimated the most comprehensive phylogeny of Facetotecta to date. We expect that our novel procedure will help to unravel the complex systematics of y-larvae and show how these fascinating larval forms have evolved. Moreover, we posit that our protocols should work on larval specimens of a diverse array of molting marine invertebrate taxa.

Felipe Mattos

and 13 more

Mark Louie Lopez

and 5 more

Studying complex metazoan communities requires taxonomic expertise and laborious work if done using the traditional morphological approach. Nowadays, the popular use of molecular-based methods accompanied by massively parallel sequencing (MPS) provides rapid and higher resolution diversity analyses. However, diversity estimates derived from the molecular-based approach can be biased by the co-detection of environmental DNA (eDNA), pseudogene contamination, and PCR amplification biases. Here, we constructed microcrustacean zooplankton mock communities to compare species diversity and composition estimates from PCR-based methods using genomic (gDNA) and complementary DNA (cDNA), metatranscriptomic transcripts, and morphology data. Mock community analyses show that gDNA mitochondrial cytochrome c oxidase I (mtCOI) amplicons inflate species richness due to environmental and nontarget species sequence contamination. Significantly higher amplicon sequence variant (ASV) and nucleotide diversity in gDNA amplicons than cDNA indicated the presence of putative pseudogenes. Last, PCR-based methods failed to detect the most abundant species in mock communities due to priming site mismatch. Overall, metatranscriptomic transcripts provided estimates of species richness and composition that closely resembled morphological data. The use of metatranscriptomic transcripts was further tested in field samples. The results showed that it could provide consistent species diversity estimates among biological and technical replicates while allowing monitoring of the zooplankton temporal species composition changes using different mitochondrial markers. These findings show that community characterization based on metatranscriptomic transcripts reflects the actual community more than PCR-based approaches.