Mi Yoon Chung

and 5 more

Increased access to genome-wide data provides new opportunities for plant conservation. However, information on neutral genetic diversity in a small number of marker loci can still be valuable because genomic data are not available to most rare plant species. In the hope of bridging the gap between conservation science and practice, we outline how conservation practitioners can more efficiently employ population genetic information in plant conservation. We first review the current knowledge about the within-population genetic variation and among-population differentiation in neutral genetic variation (NGV) and adaptive genetic variation (AGV) in seed plants. We then introduce the estimates of among-population genetic differentiation in quantitative traits (QST) and neutral markers (FST) to plant biology and summarize conservation applications derived from QST–FST comparisons, particularly on how to capture most AGV and NGV on both in-situ and ex-situ programs. Based on a review of published studies, we found that, on average, two and four populations would be needed for woody perennials (n = 18) to capture 99% of neutral and adaptive genetic variation, respectively, whereas four populations would be needed in case of herbaceous perennials (n = 14). On average, QST is about 3.6, 1.5, and 1.1 times greater than FST in woody plants, annuals, and herbaceous perennials, respectively. We suggest using maximum QST rather than average QST among trait comparisons. Hence, conservation and management policies or suggestions based solely on inference on FST could be misleading, particularly in woody species. We recommend conservation managers and practitioners consider this when formulating further conservation and restoration plans for plant species, and for woody species in particular.

Yucheol Lee

and 10 more

The purplish bifurcate mussel Mytilisepta virgata is widely distributed and represents one of the major components of the intertidal community in the northwestern Pacific (NWP). Here, we characterized population genetic structure of NWP populations throughout their whole distribution range using both mitochondrial (mtDNA cox1) and nuclear (ITS1) markers. Population genetic analyses for mtDNA cox 1 sequences revealed two monophyletic lineages (i.e., southern and northern lineages) geographically distributed according to the two different surface water temperature zones in the NWP. The timing of the lineage split is estimated at the Pliocene- mid-Pleistocene (5.49-1.61 Mya), which is consistent with the timing of the historical isolation of the East Sea/Sea of Japan from the South and East China Seas caused by sea level decline during glacial cycles. Historical sea level fluctuation during the Pliocene-Pleistocene and subsequent adaptation of mussels to different surface water temperature zones may have contributed to shaping the contemporary genetic diversity and deep divergence of the two mitochondrial lineages. Unlike mtDNA sequences, a clear lineage splitting between the two mitochondrial lineages was not found in ITS1 sequences, showing a star-like structure that is composed of a mixture of southern and northern mitochondrial lineages. Possible scenarios are proposed to explain this type of mito-nuclear discordance: stochastic divergence in the coalescent processes of the two molecular markers, or balancing selection under different marine environments. Future work is required to address whether the thermal physiology of these mussels correlates with the deep divergence of their mitochondrial genes.