Chrysanthi Skevaki

and 15 more

Background: The global epidemiology of asthma among COVID-19 patients presents striking geographic differences defining high and low [asthma and COVID-19] co-occurrence prevalence zones (1). The objective of the present study was to compare asthma prevalence among hospitalized COVID-19 patients in major global hubs across the world with the application of common inclusion criteria and definitions. Methods: We built a network of six academic hospitals in Stanford (Stanford University)/USA, Frankfurt (Goethe University), Giessen (Justus Liebig University) and Marburg (Philipps University)/Germany, and Moscow (Clinical Hospital 52 in collaboration with Sechenov University)/Russia. We collected clinical and laboratory data for patients hospitalized due to COVID-19. Comorbidities reported were based on the 2020 International Classification of Diseases-10th Revision codes. Results: Asthmatics were overrepresented among hospitalized COVID-19 patients in Stanford and underrepresented in Moscow and Germany as compared to the prevalence among adults in the local community. Asthma prevalence was similar among ICU and hospital non-ICU patients, which implied that the risk for developing severe COVID-19 was not higher among asthmatics. The number of males and comorbidities was higher among COVID-19 patients in the Stanford cohort, and the most frequent comorbidities among these asthma patients were other chronic inflammatory airway disorders such as chronic obstructive pulmonary disease (COPD). Conclusion: Observed disparity in COVID-19-associated risk among asthmatics across countries and continents is connected to varying prevalence of underlying comorbidities, particularly COPD. Public health policies in the future will need to consider comorbidities with an emphasis on COPD for prioritization of vaccination and preemptive treatment.

Ying Liu

and 15 more

Background: The molecular links between metabolism and inflammation that drive different inflammatory phenotypes in asthma are poorly understood. Objectives: To identify the metabolic signatures and underlying molecular pathways of different inflammatory asthma phenotypes. Method: In the discovery set (n=119), untargeted ultra-high performance liquid chromatography–mass spectrometry (UHPLC-MS) were applied to characterize the induced sputum metabolic profiles from asthmatic patients classified by different inflammatory phenotypes using orthogonal partial least-squares discriminant analysis (OPLS-DA) and pathway topology enrichment analysis. In the validation set (n = 114), differential metabolites were selected to perform targeted quantification. Correlations between targeted metabolites and clinical indexes in asthma patients were analyzed. Logistic and negative binomial regression models were established to assess the association between metabolites and severe asthma exacerbation. Results: 77 differential metabolites were identified in the discovery set. Pathway topology analysis uncovered that histidine metabolism, glycerophospholipid metabolism, nicotinate and nicotinamide metabolism, linoleic acid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis were involved in the pathogenesis of different asthma phenotypes. In the validation set, 24 targeted quantification metabolites were significantly differentially expressed between asthma inflammatory phenotypes. Finally, adenosine 5’-monophosphate (RRadj = 1.000, 95%CI = [1.000, 1.000], P = 0.050), allantoin (RRadj = 1.000, 95%CI = [1.000, 1.000], P = 0.043) and nicotinamide (RRadj = 1.001, 95%CI = [1.000, 1.002], P = 0.021) were demonstrated to predict severe asthma exacerbation rate ratios. Conclusions: Different inflammatory asthma phenotypes have specific metabolic profiles in induced sputum. The potential metabolic signatures may serve as identification and therapeutic target in different inflammatory asthma phenotypes.