Gustaf Hugelius

and 42 more

The long-term net sink of carbon (C), nitrogen (N) and greenhouse gases (GHGs) in the northern permafrost region is projected to weaken or shift under climate change. But large uncertainties remain, even on present-day GHG budgets. We compare bottom-up (data-driven upscaling, process-based models) and top-down budgets (atmospheric inversion models) of the main GHGs (CO2, CH4, and N2O) and lateral fluxes of C and N across the region over 2000-2020. Bottom-up approaches estimate higher land to atmosphere fluxes for all GHGs compared to top-down atmospheric inversions. Both bottom-up and top-down approaches respectively show a net sink of CO2 in natural ecosystems (-31 (-667, 559) and -587 (-862, -312), respectively) but sources of CH4 (38 (23, 53) and 15 (11, 18) Tg CH4-C yr-1) and N2O (0.6 (0.03, 1.2) and 0.09 (-0.19, 0.37) Tg N2O-N yr-1) in natural ecosystems. Assuming equal weight to bottom-up and top-down budgets and including anthropogenic emissions, the combined GHG budget is a source of 147 (-492, 759) Tg CO2-Ceq yr-1 (GWP100). A net CO2 sink in boreal forests and wetlands is offset by CO2 emissions from inland waters and CH4 emissions from wetlands and inland waters, with a smaller additional warming from N2O emissions. Priorities for future research include representation of inland waters in process-based models and compilation of process-model ensembles for CH4 and N2O. Discrepancies between bottom-up and top-down methods call for analyses of how prior flux ensembles impact inversion budgets, more in-situ flux observations and improved resolution in upscaling.

Justine Lucile Ramage

and 19 more

Jingmin Cheng

and 10 more

High-latitude tundra ecosystems are increasingly affected by climate warming. As an important fraction of soil microorganisms, fungi play essential roles in carbon (C) degradation, especially the old, chemically recalcitrant C. However, it remains obscure how fungi respond to climate warming and whether fungi, in turn, affect C stability of tundra. In a two-year winter soil warming experiment of 2 °C by snow fences, we investigated responses of fungal communities to warming in the active layer of the Alaskan tundra. Although fungal community composition, revealed by 28S rRNA gene amplicon sequencing, remained unchanged (P > 0.05), fungal functional gene composition, revealed by a microarray named GeoChip, was altered (P < 0.05). Changes in functional gene composition were linked to winter soil temperature, thaw depth, soil moisture, and gross primary productivity (Canonical Correlation Analysis, P < 0.05). Specifically, relative abundances of fungal genes encoding invertase, xylose reductase, and vanillin dehydrogenase significantly increased (P < 0.05), indicating higher C degradation capacities of fungal communities under warming. Accordingly, we detected changes of fungal gene networks under warming, including higher average path distance, lower average clustering coefficient, and lower percentage of negative links, indicating that warming potentially changed fungal interactions. Together, our study revealed higher C degradation capacities of fungal communities under short-term warming and highlights the potential impacts of fungal communities on mediating tundra ecosystem respiration, and consequently future C stability of high-latitude tundra.