Rebecca Taylor

and 5 more

Parallel evolution can occur through novel mutations, standing genetic variation, or adaptive introgression. Uncovering parallelism and introgressed populations can complicate management of threatened species, particularly as admixed populations are not generally considered under conservation legislations. We examined high coverage whole-genome sequences of 30 caribou (Rangifer tarandus) from across North America and Greenland, representing divergent intra-specific lineages, to investigate parallelism and levels of introgression contributing to the formation of ecotypes. Caribou are split into four subspecies and 11 extant conservation units, known as Designatable Units (DUs), in Canada. Using genomes from all four subspecies and six DUs, we undertake demographic reconstruction and confirm two previously inferred instances of parallel evolution in the woodland subspecies and uncover an additional instance of parallelism of the eastern migratory ecotype. Detailed investigations reveal introgression in the woodland subspecies, with introgressed regions found spread throughout the genomes encompassing both neutral and functional sites. Our comprehensive investigations using whole genomes highlight the difficulties in unequivocally demonstrating parallelism through adaptive introgression in non-model species with complex demographic histories, with standing variation and introgression both potentially involved. Additionally, the impact of parallelism and introgression on the designation of conservation units has not been widely considered, and the caribou designations will need amending in light of our results. Uncovering and decoupling parallelism and differential patterns of introgression will become prevalent with the availability of comprehensive genomic data from non-model species, and we highlight the need to incorporate this into conservation unit designations.

Rebecca Taylor

and 3 more

Conservation genomics is an important tool to manage threatened species under current biodiversity loss. Recent advances in sequencing technology mean that we can now use whole genomes to investigate demographic history, local adaptation, inbreeding, and more in unprecedented detail. However, for many rare and elusive species only non-invasive samples such as faeces can be obtained, making it difficult to take advantage of whole genome data. We present a method to extract DNA from the mucosal layer of faecal samples to reconstruct high coverage whole genomes using standard laboratory techniques, therefore in a cost-effective and efficient way. We use wild collected faecal pellets collected from wild caribou (Rangifer tarandus), a species undergoing declines in many parts of its range in Canada and subject to comprehensive conservation and population monitoring measures. We compare four faecal genomes to two tissue genomes sequenced in the same run. Quality metrics were similar between faecal and tissue samples with the main difference being the alignment success of raw reads to the reference genome likely due to differences in endogenous DNA content, affecting overall coverage. One of our faecal genomes was only reconstructed at low coverage (1.6X), however the other three obtained between 7 and 15X, compared to 19 and 25X for the tissue samples. We successfully reconstructed high-quality whole genomes from faecal DNA and, to our knowledge, are the first to obtain genome-wide data from wildlife faecal DNA in a non-primate species, representing an important advancement for non-invasive conservation genomics.