Zachary C. Waldron

and 11 more

This study focuses on utilizing the increasing availability of satellite trajectory data from global navigation satellite system-enabled low-Earth orbiting satellites and their precision orbit determination (POD) solutions to expand and refine thermospheric model validation capabilities. The research introduces an updated interface for the GEODYN-II POD software, leveraging high-precision space geodetic POD to investigate satellite drag and assess density models. This work presents a case study to examine five models (NRLMSIS2.0, DTM2020, JB2008, TIEGCM, and CTIPe) using precise science orbit (PSO) solutions of the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2). The PSO is used as tracking measurements to construct orbit fits, enabling an evaluation according to each model’s ability to redetermine the orbit. Relative in-track deviations, quantified by in-track residuals and root-mean-square errors (RMSe), are treated as proxies for model densities that differ from an unknown true density. The study investigates assumptions related to the treatment of the drag coefficient and leverages them to eliminate bias and effectively scale model density. Assessment results and interpretations are dictated by the timescale at which the scaling occurs. JB2008 requires the least scaling (~-23%) to achieve orbit fits closely matching the PSO within an in-track RMSe of 9 m when scaled over two weeks and 4 m when scaled daily. The remaining models require substantial scaling of the mean density offset (~30-75%) to construct orbit fits that meet the aforementioned RMSe criteria. All models exhibit slight over or under sensitivity to geomagnetic activity according to trends in their 24-hour scaling factors.

Guillaume Gronoff

and 19 more

The habitability of the surface of any planet is determined by a complex evolution of its interior, surface, and atmosphere. The electromagnetic and particle radiation of stars drive thermal, chemical and physical alteration of planetary atmospheres, including escape. Many known extrasolar planets experience vastly different stellar environments than those in our Solar system: it is crucial to understand the broad range of processes that lead to atmospheric escape and evolution under a wide range of conditions if we are to assess the habitability of worlds around other stars. One problem encountered between the planetary and the astrophysics communities is a lack of common language for describing escape processes. Each community has customary approximations that may be questioned by the other, such as the hypothesis of H-dominated thermosphere for astrophysicists, or the Sun-like nature of the stars for planetary scientists. Since exoplanets are becoming one of the main targets for the detection of life, a common set of definitions and hypotheses are required. We review the different escape mechanisms proposed for the evolution of planetary and exoplanetary atmospheres. We propose a common definition for the different escape mechanisms, and we show the important parameters to take into account when evaluating the escape at a planet in time. We show that the paradigm of the magnetic field as an atmospheric shield should be changed and that recent work on the history of Xenon in Earth’s atmosphere gives an elegant explanation to its enrichment in heavier isotopes: the so-called Xenon paradox.