Ross Maguire

and 11 more

On May 4th, 2022 the InSight seismometer SEIS recorded the largest marsquake ever observed, S1222a, with an initial magnitude estimate of Mw 4.7. Understanding the depth and source properties of this event has important implications for the nature of tectonic activity on Mars. Located ~37 degrees to the southeast of InSight, S1222a is one of the few non-impact marsquakes that exhibits prominent ratio surface waves. We use waveform modeling of body waves (P and S) and surface waves (Rayleigh and Love) to constrain the moment tensor and quantify the associated uncertainty. We find that S1222a likely resulted from dip-slip faulting in the mid-crust (source depth ~18 – 28 km) and estimate a scalar moment of 3.51015 – 5.01015 Nm (magnitude Mw 4.3 – 4.4). The best-fitting focal mechanism is sensitive to the choice of phase windows and misfit weights, as well as the structural model of Mars used to calculate Green’s functions. We find that an E-W to SE-NW striking thrust fault can explain the data well, although depending on the choice of misfit weighting, a normal fault solution is also permissible. The orientation of the best-fitting fault plane solutions suggests that S1222a takes place on a fault system near the martian crustal dichotomy accommodating relative motion between the northern lowlands and southern highlands. Independent constraints on the event depth and improved models of the (an)isotropic velocity structure of the martian crust and mantle could help resolve the ambiguity inherent to single-station moment tensor inversions of S1222a and other marsquakes.

Jiaqi Li

and 11 more

Maxwell Rudolph

and 2 more

The long-wavelength geoid is sensitive to Earth’s mantle density structure as well as radial variations in mantle viscosity. We present a suite of inversions for the radial viscosity profile using whole-mantle models that jointly constrain the variations in density, shear- and compressional-wavespeeds using full-spectrum tomography. We use a Bayesian approach to identify a collection of viscosity profiles compatible with the geoid, while enabling uncertainties to be quantified. Depending on tomographic model parameterization and data weighting, it is possible to obtain models with either positive- or negative-buoyancy in the large low shear velocity provinces (LLSVPs). We demonstrate that whole-mantle density models in which density and $V_S$ variations are correlated imply an increase in viscosity below the transition zone, often near ~1000~km. Many solutions also contain a low-viscosity channel below 650~km. Alternatively, models in which density is less-correlated with $V_S$ – which better fit normal mode data – require a reduced viscosity region in the lower mantle. This feature appears in solutions because it reduces the sensitivity of the geoid to buoyancy variations in the lowermost mantle. The variability among the viscosity profiles obtained using different density models is indicative of the strong non-linearities in modeling the geoid and the limited resolving power of the geoid kernels. We demonstrate that linearized analyses of model resolution do not adequately capture the posterior uncertainty on viscosity. Joint and iterative inversions of viscosity, wavespeeds, and density using seismic and geodynamic observations are required to reduce bias from prior assumptions on viscosity variation and scalings between material properties.

Martin Schimmel

and 16 more

Mars is the first extraterrestrial planet with seismometers (SEIS) deployed directly on its surface in the framework of the InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) mission. The lack of strong Marsquakes, however, strengthens the need of seismic noise studies to additionally constrain the Martian structure. Seismic noise autocorrelations of single-station recordings permit the determination of the zero-offset reflection response underneath SEIS. We present a new autocorrelation study which employs state-of-the-art approaches to determine a robust reflection response by avoiding bias from aseismic signals which are recorded together with seismic waves due to unfavorable deployment and environmental conditions. Data selection and segmentation is performed in a data-adaptive manner which takes the data root-mean-square amplitude variability into account. We further use the amplitude-unbiased phase cross-correlation and work in the 1.2-8.9 Hz frequency band. The main target are crustal scale reflections, their robustness and convergence. The strongest signal appears at 10.6 s, and, if interpreted as P-wave reflection, would correspond to a discontinuity at about 24 km depth. This signal is a likely candidate for a reflection from the base of the Martian crust due to its strength, polarity, and stability. Additionally we identify, among the stable signals, a signal at about 6.85 s that can be interpreted as a P-wave reflection from the mid-crust at about 9.5 km depth.

Nicolas Compaire

and 16 more

The SEIS seismometer of the InSight mission was deployed on the ground of Elysium Planitia, on 19 December 2018. Interferometry techniques can be used to extract information on the internal structure from the autocorrelation of seismic ambient noise and coda of seismic events. In a single-station configuration, the zero-offset global reflection of the ground vertically below the seismometer can be approximated by the stacked ZZ autocorrelation function (ACF) for P-waves and the stacked EE and NN ACFs for S-waves, assuming a horizontally layered medium and homogeneously distributed and mutually uncorrelated noise sources. We analyze continuous records from the very broadband seismometer (SEIS-VBB), and correct for potential environmental disturbances through systematic preprocessing. For each Sol (martian day), we computed the correlations functions in 24 windows of one martian hour in order to obtain a total correlation tensor for various Mars local times. In addition, a similar algorithm is applied to the Marsquake waveforms in different frequency bands. Both stability analysis and inter-comparison between background noise and seismic event results suggest that the background seismic noise at the landing site is reliably observed only around 2.4 Hz, where an unknown mechanism is amplifying the ground shaking, and only during early night hours, when the noise induced by atmospheric disturbances is minimum. Seismic energy arrivals are consistently observed across the various data-sets. Some of these arrivals present multiples. These observations are discussed in terms of Mars’ crustal structure.