Corentin Clerc

and 5 more

Marine mesozooplankton play an important role for marine ecosystem functioning and global biogeochemical cycles. Their size structure, varying spatially and temporally, heavily impacts biogeochemical processes and ecosystem services. Mesozooplankton exhibit size changes throughout their life cycle, affecting metabolic rates and functional traits. Despite this variability, many models oversimplify mesozooplankton as a single, unchanging size class, potentially biasing carbon flux estimates. Here, we include mesozooplankton ontogenetic growth and reproduction into a 3-dimensional global ocean biogeochemical model, PISCES-MOG, and investigate the subsequent effects on simulated mesozooplankton phenology, plankton distribution, and organic carbon export. Utilizing an ensemble of statistical predictive models calibrated with a global set of observations, we generated monthly climatologies of mesozooplankton biomass to evaluate the simulations of PISCES-MOG. Our analyses reveal that the model and observation-based biomass distributions are comparable (r$_{pearson}$=0.40, total epipelagic biomass: 137TgC from observations vs. 232TgC in the model), with similar seasonality (r$_{pearson}$=0.25 for the months of maximal biomass). Including ontogenetic growth in the model induced cohort dynamics and variable seasonal dynamics across mesozooplankton size classes and altered the relative contribution of carbon cycling pathways. Younger and smaller mesozooplankton transitioned to microzooplankton in PISCES-MOG, resulting in a change in particle size distribution, characterized by a decrease in large particulate organic carbon (POC) and an increase in small POC generation. Consequently, carbon export from the surface was reduced by 10\%. This study underscores the importance of accounting for ontogenetic growth and reproduction in models, highlighting the interconnectedness between mesozooplankton size, phenology, and their effects on marine carbon cycling.

Corentin Clerc

and 4 more

Filter-feeding gelatinous macrozooplankton (FFGM), namely salps, pyrosomes and doliolids, are increasingly recognized as an essential component of the marine ecosystem. Unlike crustacean zooplankton (e.g., copepods) that feed on preys that are an order of magnitude smaller, filter-feeding allows FFGM to have access to a wider range of organisms, with predator over prey ratios as high as 10$^5$:1. In addition, most FFGM produce carcasses and/or fecal pellets that sink 10 times faster than those of copepods. This implies a rapid and efficient export of organic matter to depth. Even if these organisms represent $<$5\% of the overall planktonic biomass, the induced organic matter flux could be substantial. Here we present a first estimate of the influence of FFGM organisms on the export of particulate organic matter to the deep ocean based on the marine biogeochemical model NEMO-PISCES. In this new version of PISCES, two processes characterize FFGM: the preference for small organisms due to filter feeding, and the rapid sinking of carcasses and fecal pellets. To evaluate our modeled FFGM distribution, we compiled FFGM abundance observations into a monthly biomass climatology using a taxon-specific conversion. A model-observation comparison supports the model ability to quantify the global and large-scale patterns of FFGM biomass distribution, but reveals an urgent need to better understand the factors triggering the boom-and-bust FFGM dynamics before we can reproduce the observed spatio-temporal variability of FFGM. FFGM contribute strongly to carbon export at depth (0.4 Pg C yr$^{-1}$ at 1000 m), particularly in low-productivity region (up to 40\% of organic carbon export at 1000 m) where they dominate macrozooplankton by a factor of 2. The FFGM-induced export increases in importance with depth, with a simulated transfer efficiency close to one.

Anh Le-Duy Pham

and 3 more

Marine free-living bacteria play a key role in the cycling of essential biogeochemical elements, including iron (Fe), during their uptake, transformation and release of organic matter. Similar to phytoplankton, the growth of free-living bacteria is regulated by resources such as Fe, and the low availability of these resources may influence bacterial interactions with phytoplankton, causing knock-on effects for biogeochemical cycling. Yet, knowledge of the factors limiting free-living bacterial growth and their role within the Fe cycle is poorly constrained. Here, we explicitly represent free-living bacteria in a global ocean biogeochemistry model to address these questions. We find that although Fe can emerge as proximally limiting in the tropical Pacific and in high-latitude regions during summer, the growth of free-living bacteria is ultimately controlled by the availability of labile dissolved organic carbon. In Fe-limited regions, free-living bacterial biomass is sensitive to their Fe uptake capability in seasonally Fe-limitation regions and to their minimum Fe requirements in regions perennially Fe-limited. Fe consumption by free-living bacteria is significant in the upper ocean in our model, and their competition with phytoplankton for Fe affects phytoplankton growth dynamics. The impact of free-living bacteria on the Fe distribution in the ocean interior is small due to a tight coupling between Fe uptake and release. Moving forward, future work that considers particle-attached bacteria and different bacterial metabolisms is needed to explore the broader role of bacteria in ocean Fe cycling. In this context, the global growing ’omics data from ocean observing programs can play a crucial role.