loading page

Ultrabroadband two-beam coherent anti-Stokes Raman scattering and spontaneous Raman spectroscopy of organic fluids: a comparative study
  • +7
  • Roland Ackermann,
  • Timea Koch,
  • Axel Stoecker,
  • Tobias Meyer,
  • Thomas Gabler,
  • Tom Lippoldt,
  • Jeannine Missbach-Guentner,
  • Christoph Russmann,
  • Jürgen Popp,
  • Stefan Nolte
Roland Ackermann
Friedrich Schiller Universitat Jena Institut fur Angewandte Physik

Corresponding Author:[email protected]

Author Profile
Timea Koch
Friedrich Schiller Universitat Jena Institut fur Angewandte Physik
Author Profile
Axel Stoecker
Hochschule fur angewandte Wissenschaft und Kunst - Standort Gottingen
Author Profile
Tobias Meyer
Leibniz-Institut fur Photonische Technologien eV
Author Profile
Thomas Gabler
Friedrich Schiller Universitat Jena Institut fur Angewandte Physik
Author Profile
Tom Lippoldt
Friedrich Schiller Universitat Jena Institut fur Angewandte Physik
Author Profile
Jeannine Missbach-Guentner
Universitatsmedizin Gottingen
Author Profile
Christoph Russmann
Hochschule fur angewandte Wissenschaft und Kunst - Standort Gottingen
Author Profile
Jürgen Popp
Leibniz-Institut fur Photonische Technologien eV
Author Profile
Stefan Nolte
Hochschule fur angewandte Wissenschaft und Kunst - Standort Gottingen
Author Profile

Abstract

Spontaneous Raman spectroscopy is a well-established diagnostic tool, allowing for the identification of all Raman active species with a single measurement. Yet, it may suffer from low signal intensity and fluorescent background. In contrast, coherent anti-Stokes Raman scattering (CARS) offers laser-like signals, but the traditional approach lacks the multiplex capability of spontaneous Raman spectroscopy. We present an ultrabroadband CARS setup which aims at exciting the full spectrum (300 - 3700 cm -1) of biological molecules. A dual-output optical parametric amplifier provides a ~7 fs pump/Stokes and a ~ 700 fs probe pulse. CARS spectra of DMSO, ethanol and methanol show great agreement with spontaneous Raman spectroscopy and superiority in fluorescent environments. The spectral resolution proves sufficient to differentiate between the complex spectra of L-proline and hydroxyproline. Moreover, decay constants in the sub picosecond range are determined for individual Raman transitions, providing an additional approach for sample characterization.