Mara Freilich

and 1 more

In frontal zones, water masses that are tens of kilometers in extent with origins in the mixed layer can be identified in the pycnocline for days to months. Here, we explore the pathways and mechanisms of subduction, the process by which water from the surface mixed layer makes its way into the pycnocline, using a submesoscale-resolving numerical model of a mesoscale front. By identifying Lagrangian trajectories of water parcels that exit the mixed layer, we study the evolution of dynamical properties from a statistical standpoint. Velocity and buoyancy gradients increase as water parcels experience both mesoscale (geostrophic) and submesoscale (ageostrophic) frontogenesis and subduct beneath the mixed layer into the stratified pycnocline along isopycnals that outcrop in the mixed layer. Subduction is transient and occurs in coherent regions along the front, the spatial and temporal scales of which set the scales of the subducted water masses in the pycnocline. As a result, the tracer-derived vertical transport rate spectrum is flatter than the vertical velocity spectrum. An examination of specific subduction events reveals a range of submesoscale features that support subduction. Contrary to the forced submesoscale processes that sequester low potential vorticity (PV) anomalies in the interior, we find that PV can be elevated in subducting water masses. The rate of subduction is of similar magnitude to previous studies (~100 m/year), but the pathways that are unraveled in this study along with the Lagrangian evolution of properties on water parcels, emphasize the role of submesoscale dynamics coupled with mesoscale frontogenesis.

Meghana Ranganathan

and 6 more

Inequalities persist in the geosciences. White women and people of color remain under-represented at all levels of academic faculty, including positions of power such as departmental and institutional leadership. While the proportion of women among geoscience faculty has been catalogued previously, new programs and initiatives aimed at improving diversity, focused on institutional factors that affect equity in the geosciences, necessitate an updated study and a new metric for quantifying the biases that result in under-representation . We compile a dataset of 2,531 tenured and tenure-track geoscience faculty from 62 universities in the United States to evaluate the proportion of women by rank and discipline. We find that 27% of faculty are women. The fraction of women in the faculty pool decreases with rank, as women comprise 46% of assistant professors, 34% of associate professors, and 19% of full professors. We quantify the attrition of women in terms of a fractionation factor, which describes the rate of loss of women along the tenure track and allows us to move away from the metaphor of the ‘leaky pipeline’. Efforts to address inequities in institutional culture and biases in promotion and hiring practices over the past few years may provide insight into the recent positive shifts in fractionation factor. Our results suggest a need for 1:1 hiring between men and women to reach gender parity. Due to significant disparities in race, this work is most applicable to white women, and our use of the gender binary does not represent gender diversity in the geosciences.