Franz Philip Tuchen

and 4 more

Thirty years (1993-2022) of concurrent satellite and in-situ observations show a long-term strengthening of the equatorial Pacific upper-ocean circulation. Enhanced southeasterly and cross-equatorial winds have caused an annual mean, basin-wide acceleration of the equatorial westward near-surface currents by ~20% and an acceleration of poleward flow north (south) of the equator by ~60% (~20%). Additional moored velocity data reveal a deepening of the EUC core at 170°W and significant shoaling at 140°W and 110°W, but no significant changes in EUC core velocity. The strongest subsurface zonal velocity trends are observed above the EUC core and occur before and after the seasonal maximum of EUC core velocity, causing enhanced upper-ocean vertical current shear. Consistent with trends of the 20°C isotherm depth along the equatorial Pacific, a significant basin-wide steepening of the equatorial thermocline is observed. Both the accelerating equatorial current system and the enhanced thermocline slope are consistent with an observed steepening of the zonal sea surface height gradient due to increased wind-driven westward mass transport at the surface. During February-March, both surface and subsurface currents show eastward velocity trends, in contrast to westward near-surface current trends during the remainder of the year. The trend reversal is attributed to both a long-term shift in equatorial Kelvin wave activity and to the impact of strong interannual variability due to El Niño Southern Oscillation and other modes of natural variability on decadal to multidecadal time scales.

Yann Yvon Planton

and 6 more

The use of large ensembles of model simulations is growing due to the need to minimize the influence of internal variability in evaluation of climate models and the detection of climate change induced trends. Yet, exactly how many ensemble members are required to effectively separate internal variability from climate change varies from model to model and metric to metric. Here we analyze the first three statistical moments (i.e., mean, variance and skewness) of detrended precipitation and sea surface temperature (interannual anomalies for variance and skewness) in the eastern equatorial Pacific from observations and ensembles of Coupled Model Intercomparison Project Phase 6 (CMIP6) climate simulations. We then develop/assess the equations, based around established statistical theory, for estimating the required ensemble size for a user defined uncertainty range. Our results show that — as predicted by statistical theory — the uncertainties in ensemble means of these statistics decreases with the square root of the time series length and/or ensemble size. Further to this, as the uncertainties of these ensemble-mean statistics are generally similar when computed using pre-Industrial control runs versus historical runs, the pre-industrial runs can sometimes be used to estimate: i) the number of realizations and years needed for a historical ensemble to adequately characterize a given statistic; or ii) the expected uncertainty of statistics computed from an existing historical simulation or ensemble, if a large ensemble is not available.