Peter Alexander

and 10 more

We use observations from one of the SOUTHTRAC (Southern Hemisphere Transport, Dynamics, and Chemistry) Campaign flights in Patagonia and the Antarctic Peninsula during September 2019 to analyze possible sources of gravity wave (GW) in this hotspot during austral late winter and early spring. Data from two of the instruments onboard the German High Altitude and Long Range Research Aircraft (HALO) are employed: the Airborne Lidar for Middle Atmosphere research (ALIMA) and the Basic HALO Measurement and Sensor System (BAHAMAS). The former provides vertical temperature profiles along the trajectory while the latter gives the three components of velocity and temperature at the flight position. GW induced perturbations are obtained from these observations. We include numerical simulations from the Weather Research and Forecast (WRF) model to place a four-dimensional context for the GW observed during the flight and in order to present possible interpretations of the measurements, as for example the orientation or eventual propagation sense of the waves may not be inferred using only data obtained onboard. We first evaluate agreements and discrepancies between the model outcomes and the observations. This allowed us an assessment of the WRF performance in the generation, propagation and eventual dissipation of diverse types of GW through the troposphere, stratosphere and lower mesosphere. We then analyze the coexistence and interplay of mountain waves (MW) and non-orographic (NO) GW. The MW dominate above topographic areas and in direction of the so-called GW belt whereas the latter waves are mainly relevant above oceanic zones.

Alejandro de la Torre

and 12 more

To understand the main orographic and non-orographic sources of gravity waves (GWs) over South America during an Experiment (Rapp et al, 2021, https://doi.org/10.1175/BAMS-D-20-0034.1), we propose the application of a rotational spectral analysis based on methods originally developed for oceanographic studies. This approach is deployed in a complex scenario of large-amplitude GWs by applying it to reanalysis data. We divide the atmospheric region of interest into two height intervals. The simulations are compared with lidar measurements during one of the flights. From the degree of polarization and the total energy of the GWs, the contribution of the upward and downward wave packets is described as a function of their vertical wavenumbers. At low levels, a larger downward energy flux is observed in a few significant harmonics, suggesting inertial GWs radiated at polar night jet levels, and below, near to a cold front. In contrast, the upward GW energy flux, per unit area, is larger than the downward flux, as expected over mountainous areas. The main sub-regions of upward GW energy flux are located above Patagonia, the Antarctic Peninsula and only some oceanic sectors. Above the sea, there are alternating sub-regions dominated by linearly polarized GWs and sectors of downward GWs. At the upper levels, the total available GW energy per unit mass is higher than at the lower levels. Regions with different degrees of polarization are distributed in elongated bands. A satisfactory comparison is made with an analysis based on the phase difference between temperature and vertical wind disturbances.