Jing Wei

and 12 more

In the Alpine Meadow ecosystems of eastern Qinghai-Tibet Plateau, the interrelations among the species diversity of different vegetation communities, productivity, community structure as well as soil nutrients were thoroughly researched through running biodiversity manipulation experiment to explore the species survey consequences of 3 and 10 years of plant functional groups (Gramineae, Cyperaceae, Legumes, and other Forbs) removal at Haibei station. The results demonstrated that the interannual variation of the remaining species richness, above-ground and below-ground biomass of the community gradually presented a tendency to decrease as the removal time increased, and there was a positive relationship between species richness and productivity, and the correlation became increasingly significant. The removal behavior reduced the number of Gramineae within the remaining community. The content of soil total nitrogen, phosphorus, organic matter and moisture content of Legumes loss treatment increased significantly. The treatment that removal Forb had the lowest negative cohesion values, revealing that it is difficulty for this community to recover to the previous equilibrium state in a short time. In our study, all affects of species removal on ecosystem may be related to variance in the structure and composition of species in community. Meanwhile, changes in the number of Gramineae indicated that Gramineae are more sensitive and less resistant to removal behavior. Furthermore, the specific performance of Legumes removal indirectly indicates that the loss of diverse plant function groups prompted distinct replies to the starvation and compensation effects. In a nutshell, species loss at the community level leads to shifts in the niche of each species, inducing a redistribution of community resources and leading to significant changes in community structure.

Jianxiang Zhang

and 7 more

Ecosystem carbon sequestration services (CSSs) are the most important ecosystem services (ESs) to mitigate global warming. Multiple soil and water conservation projects (SWCPs) have been implemented to restore disturbed ecosystems on the Loess Plateau, China. However, responses of CSSs to SWCPs are unclear due to trade-offs between CSSs and other ESs. Here, we quantified key ESs (i.e. carbon sequestration, water yield, soil conservation and crop production) and the spatio-temporal trade-off relationships by using RS/GIS techniques and ecosystem modeling in the Yanhe Basin, Loess Plateau, during 1990-2020. Additionally, the structural equation model (SEM) was used to estimate the direct and indirect inflences of multiple SWCPs including check dams, terraces and Grain for Green (GFG) on CSSs. Results show that CSSs has improved to 457 t/ha in 2020, which was twice compared to 1990. Here in, 57% of CSSs changes were explained by ESs and SWCPs. That is, water yield (-77%), soil conservation (76%), crop production (22%), GFG (80%), check dams (16%), and terraces (-72%), respectively. In order to balance trade-offs among ESs, GFG project with a focus on vegetation protection need to be prioritised, followed by check dams, and non-agricultural terraces such as [reverse-slope level terrace](http://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=10019332&asa=Y&AN=63484555&h=G6mLycMgNlOVPgRoCYkOUk10bJVLBylqio15fIxfweqCrJzP5PEtwMoYDxnyvIpHMRMXk%2BO8V2wSOuIGuR9DpA%3D%3D&crl=c)s and fish-scale pits. Our results provide a mechanistic understanding of how interacting processes of human activities at small catchments scales to influence carbon sequestration, and promote sustainable utlization of ESs in hill and gully regions of the Loess Plateau.

Jian Sun

and 10 more

In the context of “Carbon Emissions Peak” and “Carbon Neutrality”, grazing exclusion (GE) has been applied widely to rehabilitate degraded grasslands and increase carbon sequestration. However, on the Qingzang Plateau (QP), the impacts of GE on carbon dynamics of alpine grasslands are poorly understood, particularly at regional scale. Here, we evaluated the responses of carbon sequestration to GE in different alpine grasslands across QP to fill this knowledge gap by using meta-analysis. Overall, the effects of GE on ecosystem carbon fractions were dependent on GE duration, grassland types and climate factors. GE had more obviously positive effects on carbon stock across alpine meadow than alpine steppe. Longer duration of GE was more effective for ecosystem carbon sequestration in alpine steppe. Annual mean precipitation (AMP) and temperature (AMT) began to dominate ecosystem carbon sequestration after three years of GE duration across alpine meadow; and AMP was important climate factor limiting ecosystem carbon sequestration in the alpine steppe. In terms of plant carbon fraction, GE generated continuous positive effects on aboveground biomass (AGB) with increased GE duration in alpine meadow, while the continuous beneficial effects for AGB of alpine steppe disappeared at the 8th year of GE duration. And no positive effects were found on belowground biomass at the 11th year in both alpine meadow and alpine steppe. For soil organic carbon and microbial biomass carbon, there were no obvious trends in response to GE duration. In general, we highlighted that the responses of different carbon fractions (plant -soil - microbe) to GE were nonuniform at spatial and temporal scales, thereby we should adopt different carbon management practices for sustainable development of different grasslands.