authorea.com/55610

Object Localization by Smart Floors

Abstract

The abstract goes here. Smartfloor and intelligent space.

Here is some sample LaTeX notation. By associativity, if \(\zeta\) is combinatorially closed then \(\delta = \Psi\). Since \[{S^{(F)}} \left( 2, \dots,-\mathbf{{i}} \right) \to \frac{-\infty^{-6}}{\overline{\alpha}},\] \(l < \cos \left( \hat{\xi} \cup P \right)\). Thus every functor is Green and hyper-unconditionally stable. Obviously, every injective homeomorphism is embedded and Clifford. Because \(\mathcal{{A}} > S\), \(\tilde{i}\) is not dominated by \(b\). Thus \({T_{t}} > | A |\).

Subsection text here. Let’s show some more LaTeX: Obviously, \({W_{\Xi}}\) is composite. Trivially, there exists an ultra-convex and arithmetic independent, multiply associative equation. So \(\infty^{1} > \overline{0}\). It is easy to see that if \({v^{(W)}}\) is not isomorphic to \(\mathfrak{{l}}\) then there exists a reversible and integral convex, bounded, hyper-Lobachevsky point. One can easily see that \(\hat{\mathscr{{Q}}} \le 0\). Now if \(\bar{\mathbf{{w}}} > h' ( \alpha )\) then \({z_{\sigma,T}} = \nu\). Clearly, if \(\| Q \| \sim \emptyset\) then every dependent graph is pseudo-compactly parabolic, complex, quasi-measurable and parabolic. This completes the proof. (Kämpke 2008)

Subsubsection text here. This is how you can cite other articles. Just type aureplacedverbaa where DOI is a Digital Object Identifier. For example cite this article published in IEEE INFOCOM 2001 (Aad 2001)

Indoor localization is one of the most challenging and important tasks of various systems, especially in the domain of assistive robotic syst

## Share on Social Media