Zhi Li

and 10 more

Effective flash flood forecasting and risk communication are imperative for mitigating the impacts of flash floods. However, the current forecasting of flash flood occurrence and magnitude largely depends on forecasters’ expertise. An emerging flashiness-intensity-duration-frequency (F-IDF) product is anticipated to facilitate forecasters by quantifying the frequency and magnitude of an imminent flash flood event. To make this concept usable, we develop two distributed F-IDF products across the contiguous US, utilizing both a Machine Learning (ML) approach and a physics-based hydrologic simulation approach that can be applied at ungaged pixels. Specifically, we explored 20 common ML methods and interpreted their predictions using the Shapley Additive exPlanations method. For the hydrologic simulation, we applied the operational flash flood forecast framework – EF5/CREST. It is found that: (1) both CREST and ML depict similar flash flood hot spots across the CONUS; (2) The ML approach outperforms the CREST-based approach, with the drainage area, air temperature, channel slope, potential evaporation, soil erosion identified as the five most important factors; (3) The CREST-based approach exhibits high model bias in regions characterized by dam/reservoir regulation, urbanization, or mild slopes. We discuss two application use cases for these two products. The CREST-based approach, with its dynamic streamflow predictions, can be integrated into the existing real-time flash flood forecast system to provide event-based forecasts of the frequency and intensity of floods at multiple durations. On the other hand, the ML-based approach, which is a static measure, can be integrated into a flash flood risk assessment framework for urban planners.

Zhi Li

and 7 more

Coupled Hydrologic & Hydraulic (H&H) models have been widely applied to simulate both discharge and flood inundation due to their complementary advantages, yet the H&H models oftentimes suffer from one-way and weak coupling and particularly disregarded run-on infiltration or re-infiltration. This could compromise the model accuracy, such as under-prediction (over-prediction) of subsurface water contents (surface runoff). In this study, we examine the H&H model performance differences between the scenarios with and without re-infiltration process in extreme events¬ – 100-year design rainfall and 500-year Hurricane Harvey event – from the perspective of flood depth, inundation extent, and timing. Results from both events underline that re-infiltration manifests discernable impacts and non-negligible differences for better predicting flood depth and extents, flood wave timings, and inundation durations. Saturated hydraulic conductivity and antecedent soil moisture are found to be the prime contributors to such differences. For the Hurricane Harvey event, the model performance is verified against stream gauges and high water marks, from which the re-infiltration scheme increases the Nash Sutcliffe Efficiency score by 140% on average and reduces maximum depth differences by 17%. This study highlights that the re-infiltration process should not be disregarded even in extreme flood simulations. Meanwhile, the new version of the H&H model – the Coupled Routing and Excess STorage inundation MApping and Prediction (CREST-iMAP) Version 1.1, which incorporates such two-way coupling and re-infiltration scheme, is released for public access.