test

References

  1. Frederik Barkhof, Massimo Filippi, David H Miller, Philip Scheltens, Adriana Campi, Chris H Polman, Giancarlo Comi, Herman J Ader, Nick Losseff, Jacob Valk. Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis.. Brain 120, 2059–2069 Oxford Univ Press, 1997.

  2. T. Brosch, L. Y. W. Tang, Y. Yoo, D. K. B. Li, A. Traboulsee, R. Tam. Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation. Medical Imaging, IEEE Transactions on 35, 1229-1239 (2016). Link

  3. Antonio Cerasa, Eleonora Bilotta, Antonio Augimeri, Andrea Cherubini, Pietro Pantano, Giancarlo Zito, Pierluigi Lanza, Paola Valentino, Maria C Gioia, Aldo Quattrone. A cellular neural network methodology for the automated segmentation of multiple sclerosis lesions. Journal of neuroscience methods 203, 193–199 Elsevier, 2012.

  4. Sung-Hyuk Cha. Comprehensive survey on distance/similarity measures between probability density functions. City 1, 1 (2007).

  5. Govind B Chavhan. MRI made easy. JP Medical Ltd, 2013.

  6. Carlos Coello Coello, Gary B Lamont, David A Van Veldhuizen. Evolutionary algorithms for solving multi-objective problems. Springer Science & Business Media, 2007.

  7. D Louis Collins, Peter Neelin, Terrence M Peters, Alan C Evans. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space.. Journal of computer assisted tomography 18, 192–205 LWW, 1994.

  8. Alastair Compston, Alasdair Coles. Multiple sclerosis. The Lancet 372, 1502-1517 Elsevier, 2008.

  9. Christakis Constantinides. Magnetic Resonance Imaging: The Basics. CRC press, 2014.

  10. Florian Döhler, Florian Mormann, Bernd Weber, Christian E Elger, Klaus Lehnertz. A cellular neural network based method for classification of magnetic resonance images: towards an automated detection of hippocampal sclerosis. Journal of neuroscience methods 170, 324–331 Elsevier, 2008.

  11. Sushmita Datta, Ponnada A Narayana. A comprehensive approach to the segmentation of multichannel three-dimensional MR brain images in multiple sclerosis. NeuroImage: Clinical 2, 184–196 Elsevier, 2013.

  12. Joaquín Derrac, Salvador García, Daniel Molina, Francisco Herrera. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation 1, 3–18 Elsevier, 2011.

  13. Lee R Dice. Measures of the amount of ecologic association between species. Ecology 26, 297–302 Wiley Online Library, 1945.

  14. Juan J Durillo, Antonio J Nebro. jMetal: A Java framework for multi-objective optimization. Advances in Engineering Software 42, 760–771 Elsevier, 2011.

  15. Russell C. Eberhart, Yuhui Shi. Computational Intelligence - Concepts to Implementations. Elsevier, 2007.

  16. Daniel García-Lorenzo, Simon Francis, Sridar Narayanan, Douglas L Arnold, D Louis Collins. Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging. Medical image analysis 17, 1–18 Elsevier, 2013.

  17. Daniel García-Lorenzo, Sylvain Prima, Douglas L Arnold, D Louis Collins, Christian Barillot. Trimmed-likelihood estimation for focal lesions and tissue segmentation in multisequence MRI for multiple sclerosis. Medical Imaging, IEEE Transactions on 30, 1455–1467 IEEE, 2011.

  18. Xavier Glorot, Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks.. 9, 249–256 In Aistats. (2010).

  19. Nicolas Guizard, Pierrick Coupé, Vladimir S. Fonov, Jose V. Manjón, Douglas L. Arnold, D. Louis Collins. Rotation-invariant multi-contrast non-local means for MS lesion segmentation. NeuroImage: Clinical 8, 376 - 389 (2015). Link

  20. Stephen L Hauser, DE Goodkin. Multiple sclerosis and other demyelinating diseases. 2, 2452–2461 In Harrison’s Principles of Internal Medicine. McGraw-Hill, 2001.

  21. Simon Haykin. Redes Neurais: Princípios e Prática. Bookman, 2001.

  22. Lifeng He, Yuyan Chao, Kenji Suzuki. Two efficient label-equivalence-based connected-component labeling algorithms for 3-D binary images. Image Processing, IEEE Transactions on 20, 2122–2134 IEEE, 2011.

  23. Andrew Jesson, Tal Arbel. Hierarchical MRF and Random Forest Segmentation of MS Lesions and Healthy Tissues in Brain MRI. In The Longitudinal MS Lesion Segmentation Challenge. (2015).

  24. Yaochu Jin. Surrogate-assisted evolutionary computation: Recent advances and future challenges. Swarm and Evolutionary Computation 1, 61–70 Elsevier, 2011.

  25. J. Kennedy, R. Eberhart. Particle swarm optimization. 4, 1942-1948 In Neural Networks, 1995. Proceedings., IEEE International Conference on. (1995).

  26. Ji-Hyun Kim. Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap. Computational Statistics & Data Analysis 53, 3735–3745 Elsevier, 2009.

  27. Jérémy Lecoeur, Jean-Christophe Ferré, Christian Barillot. Optimized supervised segmentation of MS lesions from multispectral MRIs. In MICCAI workshop on Medical Image Analysis on Multiple Sclerosis (validation and methodological issues). (2009).

  28. Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim, Anthony D. Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennupaty, Per Hammarlund, Ronak Singhal, Pradeep Dubey. Debunking the 100X GPU vs. CPU Myth: An Evaluation of Throughput Computing on CPU and GPU. SIGARCH Comput. Archit. News 38, 451–460 ACM, 2010. Link

  29. Hui Li, Qingfu Zhang. Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. Evolutionary Computation, IEEE Transactions on 13, 284–302 IEEE, 2009.

  30. Xavier Lladó, Arnau Oliver, Mariano Cabezas, Jordi Freixenet, Joan C Vilanova, Ana Quiles, Laia Valls, Lluís Ramió-Torrentà, Alex Rovira. Segmentation of multiple sclerosis lesions in brain MRI: A review of automated approaches. Information Sciences 186, 164–185 Elsevier, 2012.

  31. Andrea Mambrini, Dario Izzo. PaDe: a parallel algorithm based on the MOEA/D framework and the island model. 711–720 In Parallel Problem Solving from Nature–PPSN XIII. Springer, 2014.

  32. Anirban Mukhopadhyay. MRI Brain Image Segmentation Using Interactive Multiobjective Evolutionary Approach. 10–29 In Handbook of Research on Natural Computing for Optimization Problems. IGI Global, 2016.

  33. Antonio J Nebro, Juan J Durillo. A study of the parallelization of the multi-objective metaheuristic MOEA/D. 303–317 In Learning and Intelligent Optimization. Springer, 2010.

  34. WS Ooi, CP Lim. Multi-objective image segmentation with an interactive evolutionary computation approach. Journal of Intelligent & Fuzzy Systems 24, 239–249 IOS Press, 2013.

  35. World Health Organization, others. Atlas: Multiple sclerosis resources in the world 2008. Geneva: World Health Organization, 2008.

  36. Gintautas Palubinskas. Mystery behind similarity measures MSE and SSIM. 575–579 In 2014 IEEE International Conference on Image Processing (ICIP). (2014).

  37. Chris H Polman, Stephen C Reingold, Brenda Banwell, Michel Clanet, Jeffrey A Cohen, Massimo Filippi, Kazuo Fujihara, Eva Havrdova, Michael Hutchinson, Ludwig Kappos, others. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Annals of neurology 69, 292–302 Wiley Online Library, 2011.

  38. Martin C Rinard. Unsynchronized techniques for approximate parallel computing. 41–50 In Proceedings of the 2012 ACM workshop on Relaxing synchronization for multicore and manycore scalability. (2012).

  39. Eloy Roura, Arnau Oliver, Mariano Cabezas, Sergi Valverde, Deborah Pareto, Joan C Vilanova, Lluís Ramió-Torrentà, Àlex Rovira, Xavier Lladó. A toolbox for multiple sclerosis lesion segmentation. Neuroradiology 1–13 Springer, 2015.

  40. Trina D Russ, Mark W Koch, Charles Q Little. A 2D range Hausdorff approach for 3D face recognition. 169–169 In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)-Workshops. (2005).

  41. Sriparna Saha, Sanghamitra Bandyopadhyay. Automatic MR brain image segmentation using a multiseed based multiobjective clustering approach. Applied Intelligence 35, 411–427 Springer, 2011.

  42. Mohak Shah, Yiming Xiao, Nagesh Subbanna, Simon Francis, Douglas L Arnold, D Louis Collins, Tal Arbel. Evaluating intensity normalization on MRIs of human brain with multiple sclerosis. Medical image analysis 15, 267–282 Elsevier, 2011.

  43. John G Sled, Alex P Zijdenbos, Alan C Evans. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE transactions on medical imaging 17, 87–97 IEEE, 1998.

  44. Jean-Christophe Souplet, Christine Lebrun, Nicholas Ayache, Grégoire Malandain, others. An automatic segmentation of T2-FLAIR multiple sclerosis lesions. In The MIDAS Journal-MS Lesion Segmentation (MICCAI 2008 Workshop). (2008).

  45. Jr. Steele, Doug Lea, Christine H. Flood. Fast Splittable Pseudorandom Number Generators. 453–472 In Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages & Applications. ACM, 2014. Link

  46. Ralph E Steuer, Eng-Ung Choo. An interactive weighted Tchebycheff procedure for multiple objective programming. Mathematical programming 26, 326–344 Springer, 1983.

  47. Martin Styner, Joohwi Lee, Brian Chin, Matthew S Chin, Hoai-huong Tran, Valerie Jewells, Simon Warfield. 3D segmentation in the clinic: A grand challenge II: MS lesion segmentation. In: MIDAS Journal 1–5 In MICCAI 2008 Workshop. (2008).

  48. Abdel A Taha, Allan Hanbury. Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC medical imaging 15, 29 BioMed Central Ltd, 2015.

  49. X. Tomas-Fernandez, S.K. Warfield. A Model of Population and Subject (MOPS) Intensities With Application to Multiple Sclerosis Lesion Segmentation. Medical Imaging, IEEE Transactions on 34, 1349-1361 (2015). Link

  50. Suthirth Vaidya, Abhijith Chunduru, Ramanathan Muthuganapathy, Ganapathy Krishnamurthi. Longitudinal multiple sclerosis lesion segmentation using 3D convolutional neural networks. In The Longitudinal MS Lesion Segmentation Challenge. (2015).

  51. Theo Vos, Ryan M Barber, Brad Bell, Amelia Bertozzi-Villa, Stan Biryukov, Ian Bolliger, Fiona Charlson, Adrian Davis, Louisa Degenhardt, Daniel Dicker, others. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet 386, 743–800 Elsevier, 2015.

  52. Simon K Warfield, Kelly H Zou, William M Wells. Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE transactions on medical imaging 23, 903–921 IEEE, 2004.

  53. Xin Yao. Evolving artificial neural networks. Proceedings of the IEEE 87, 1423 -1447 (1999).

  54. Tianming Zhan, Renping Yu, Yu Zheng, Yongzhao Zhan, Liang Xiao, Zhihui Wei. Multimodal spatial-based segmentation framework for white matter lesions in multi-sequence magnetic resonance images. Biomedical Signal Processing and Control 31, 52–62 Elsevier, 2017.

  55. Mengxuan Zhang, Licheng Jiao, Wenping Ma, Jingjing Ma, Maoguo Gong. Multi-objective evolutionary fuzzy clustering for image segmentation with MOEA/D. Applied Soft Computing 48, 621–637 Elsevier, 2016.

  56. Qingfu Zhang, Hui Li. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. Evolutionary Computation, IEEE Transactions on 11, 712–731 IEEE, 2007.

  57. Qingfu Zhang, Wudong Liu, Hui Li. The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. 203–208 In Evolutionary Computation, 2009. CEC’09. IEEE Congress on. (2009).

  58. Qingfu Zhang, Ponnuthurai N Suganthan. Final report on CEC’09 MOEA competition. In Congress on evolutionary computation (CEC 2009). (2009).

  59. Alex P Zijdenbos, Reza Forghani, Alan C Evans. Automatic “Pipeline” Analysis of 3-D MRI Data for Clinical Trials: Application to Multiple Sclerosis. Medical Imaging, IEEE Transactions on 21, 1280–1291 IEEE, 2002.