Accurate and high-resolution spatio-temporal information about crop phenology obtained from Synthetic Aperture Radar (SAR) data is an essential component for crop management and yield estimation at a local scale. Crop growth monitoring studies seldom exploit complete polarimetric information contained in dual-pol GRD SAR data. In this study, we propose three polarimetric descriptors: the pseudo scattering-type parameter (θc), the pseudo scattering entropy parameter (Hc), and the co-pol purity parameter (mc) from dual-pol S1 GRD SAR data. We also introduce a novel unsupervised clustering framework using Hc and θc with six clustering zones to represent various scattering mechanisms. We implemented the proposed algorithm on the cloud-based Google Earth Engine (GEE) platform for Sentinel-1 SAR data. We have shown the sensitivity of these descriptors over a time series of data for wheat and canola crops at a test site in Canada. From the leaf development stage to the flowering stage for both crops, the pseudo scattering-type parameter θc changes by approximately 17°. Moreover, within the entire phenology window, both mc and Hc varies by about 0.6. The effectiveness of θc and Hc to cluster the phenological stages for the two crops is also evident from the clustering plot. During the leaf development stage, about 90 % of the sampling points were clustered into the low to medium entropy scattering zone for both the crops. Throughout the flowering stage, the entire cluster shifted into the high entropy vegetation scattering zone. Finally, during the ripening stage, the clusters of sample points were split between the high entropy vegetation scattering zone and the high entropy distributed scattering zone, with > 55 % of the sampling points in the high entropy distributed scattering zone. This innovative clustering framework will facilitate the operational use of S1 GRD SAR data for agricultural applications. This article is submitted to ISPRS Journal of Photogrammetry and Remote Sensing
This manuscript was accepted for publication on IEEE Transactions on Geoscience and Remote Sensing. Abstract: In radar polarimetry, incoherent target decomposition techniques help extract scattering information from polarimetric SAR data. This is achieved either by fitting appropriate scattering models or by optimizing the received wave intensity through the diagonalization of the coherency (or covariance) matrix. As such, the received wave information depends on the received antenna configuration. Additionally, a polarimetric descriptor that is independent of the received antenna configuration might provide additional information which is missed by the individual elements of the coherency matrix. This implies that existing target characterization techniques might neglect this information. In this regard, we suitably utilize the 2D and 3D Barakat degree of polarization which is independent of the received antenna configuration to obtain distinct polarimetric information for target characterization. In this study, we introduce new roll-invariant scattering-type parameters for both full-polarimetric (FP) and compact-polarimetric (CP) SAR data. These new parameters jointly use the information of the 2D and 3D Barakat degree of polarization and the elements of the coherency (or covariance) matrix. We use these new scattering type parameters, which provide equivalent information as the Cloude alpha for FP SAR data and the ellipticity parameter chi for CP SAR data, to characterize various targets adequately. Additionally, we appropriately utilize these new scattering-type parameters to obtain unique non-model based three-component scattering power decomposition techniques. We obtain the even-bounce, and the odd-bounce scattering powers by modulating the total polarized power by a proper geometrical factor derived using the new scattering-type parameters for FP and CP SAR data. The diffused scattering power is obtained as the depolarized fraction of the total power. Moreover, due to the nature of its formulation, the decomposition scattering powers are nonnegative and roll-invariant while the total power is conserved. The proposed method is both qualitatively and quantitatively assessed utilizing the L-band ALOS-2 and C-band Radarsat-2 FP and the associated simulated CP SAR data.