Kieran Murphy

and 43 more

Climate change could irreversibly modify Southern Ocean ecosystems. Marine ecosystem model (MEM) ensembles can assist policy making by projecting future changes and allowing the evaluation and assessment of alternative management approaches. However, projected future changes in total consumer biomass from the Fisheries and Marine Ecosystem Model Intercomparison Project (FishMIP) global MEM ensemble highlight an uncertain future for the Southern Ocean, indicating the need for a region-specific ensemble. A large source of model uncertainty originates from the Earth system models (ESMs) used to force FishMIP models, particularly future changes to lower trophic level biomass and sea ice coverage. To build confidence in regional MEMs as ecosystem-based management tools in a changing climate that can better account for uncertainty, we propose the development of a Southern Ocean Marine Ecosystem Model Ensemble (SOMEME) contributing to the FishMIP 2.0 regional model intercomparison initiative. One of the challenges hampering progress of regional MEM ensembles is achieving the balance of global standardised inputs with regional relevance. As a first step, we design a SOMEME simulation protocol, that builds on and extends the existing FishMIP framework, in stages that include: detailed skill assessment of climate forcing variables for Southern Ocean regions, extension of fishing forcing data to include whaling, and new simulations that assess ecological links to sea-ice processes in an ensemble of candidate regional MEMs. These extensions will help advance assessments of urgently needed climate change impacts on Southern Ocean ecosystems.

Rowan Trebilco

and 18 more

Proactive and coordinated action to mitigate and adapt to climate change will be essential for achieving the healthy, resilient, safe, sustainably harvested and biodiverse ocean that the UN Decade of Ocean Science and sustainable development goals (SDGs) seek. Ocean-based mitigation actions could contribute 12% of the emissions reductions required by 2030 to keep warming to less than 1.5ºC but, because substantial warming is already locked in, extensive adaptation action is also needed. Here, as part of the Future Seas project, we use a “foresighting/hindcasting” technique to describe two scenarios for 2030 in the context of climate change mitigation and adaptation for ocean systems. The “business-as-usual” future is expected if current trends continue, while an alternative future could be realised if we were to effectively use available data and knowledge to push as far as possible towards achieving the UN SDGs. We identify three drivers that differentiate between these alternative futures: (i) appetite for climate action, (ii) handling extreme events and (iii) climate interventions. Actions that could navigate towards the optimistic, sustainable and technically achievable future include:proactive creation and enhancement of economic incentives for mitigation and adaptation;supporting the proliferation of local initiatives to spur a global transformation;enhancing proactive costal adaptation management;investing in research to support adaptation to emerging risks;deploying marine-based renewable energy;deploying marine-based negative emissions technologies;developing solar radiation management approaches; anddeploying existing and new solar radiation management approaches to help safeguard critical ecosystems.