loading page

Nonexistence of global solutions to wave Equations with structural damping and nonlinear memory
  • Mokhtar Kirane,
  • Abderrazak NABTi,
  • Mohamed Jleli
Mokhtar Kirane
University de La Rochelle

Corresponding Author:[email protected]

Author Profile
Abderrazak NABTi
Universite de Tebessa
Author Profile
Mohamed Jleli
kING SAUD UNIVERSITY Riyadh, Saudi Arabia
Author Profile


For the following wave equations with structural damping and nonlinear memory source terms \[ u_{tt}+(-\Delta)^{\frac{\alpha}{2}}u +(-\Delta)^{\frac{\beta}{2}}u_t =\int_{0}^{t}(t-s)^{\gamma-1} \vert u (s)\vert^{p}\,\text{d}s, \] and \[ u_{tt}+(-\Delta)^{\frac{\alpha}{2}}u +(-\Delta)^{\frac{\beta}{2}}u_t = \int_{0}^{t}(t-s)^{\gamma-1} \vert u_s (s)\vert^{p}\,\text{d}s, \] posed in $(x,t) \in \mathbb{R}^N \times [0,\infty) $, where $u=u(x,t)$ is real-value unknown function, $p>1$, $\alpha,\beta\in (0, 2]$, $\gamma\in (0,1)$, we prove the nonexistence of global solutions. Moreover, we give an upper bound estimate of the life span of solutions.