Abstract
We study the Liouville theorem for steady Q-tensor system of liquid
crystal in $\R^3$. Assuming that
$u\in L^{\frac 92,
\infty}(\R^3)\cap
\dot{H}(\R^3)$ and
$Q\in H^2(\R^3)$, we show that the
steady system admits only trivial solution $u=0, Q=0$.