Anton Chizhov edited untitled.tex  almost 8 years ago

Commit id: 6ca71b3b7b3ab3190ec0ced3cff0b1f87989cae0

deletions | additions      

       

\begin{equation} \label{e1}  \varphi_N (t)=\frac{p}{2\, \sigma \, r_{i} }  \bigl(V_d(t)-V_s(t)\bigr) +   \frac{p \, L}{2\, \sigma \, r_{i} } \left(\left(\frac{\tau ^{sp} I_{Na}^{\max } }{2} \, \nu  (t)\right)\, S^{soma} \right) k_1 \nu(t)  \end{equation}  where $V_s(t)$ and $V_d(t)$ are the somatic and dendritic neuronal membrane potentials; neurons are homogeneously distributed with  the density $p$ per area; $r_{i} $ is the specific intracellular resistivity; $\sigma $ is the mean conductivity of extracellular medium, assumed to be a constant. constant; $\nu(t)$ is the firing rate; $k_1$ is a coefficient.  \subsection {Glial contribution into LFP}  The glial contribution into LFP, $\varphi_G(t)$, is proportial to the glial membrane currents of potassium ions, thus can be approximated as follows: