Pascal edited section_textit_DDM_textit_RIM__.tex  almost 8 years ago

Commit id: 0e3981fd417f203ef0624a6aacdebb3bebc92157

deletions | additions      

       

\subsection{The \textit{DDM}}  Applying equation(1) to equities leads to  $P_{t}=\displaystyle\sum_{i=1}^{K}\frac{D_{t+i}}{(1+R)^i}+P_{t+K}$  where $P_{t}$ is the stocks price at $t$, $D_{t+i} the future dividend at $t+i$, $R$ the discount rate and  $P_{t+K}$ the terminal value. Again, $R$ is necessarely the total return of the shareholder one period if he pays $P_{t}$, receive $D_{t+1}$,$D_{t+2}$, . . . $D_{t+K}$ and sells the stock at $P_{t+K}$. It is worth mentioning that the dividends are always reinvested and that the total shareholder return is going to be $(1+R)^K-1$ over $K$ periods.  The Gordon Growth Model is a simple version of the DDM where it is assumed that  dividends will grow at a constant rate, duration of equity is infinite so that terminal value  is negligeable:  Pt =  .  .  i=1  Dt+i  (1 + R)i  .  D1  R  -  g  ,  where g is the expected constant dividend growth rate in perpetuity.This equation highlights  the fact that future returns are driven by the current valuation and future growth.  2  $EV_{t}=\displaystyle\sum_{i=t+1}^{t+K}\frac{FCFF_i}{(1+R)^i}+EV_{t+K}$  $P_{t}=\displaystyle\sum_{i=1}^{K}\frac{D_{t+i}}{(1+R)^i}+P_{t+K}$  $P_{t}=\displaystyle\sum_{i=1}^{\infty}\frac{D_{t+i}}{(1+R)^i}\approx\frac{D_{1}}{R-g}$