Antonino Ingargiola edited background-estimation.tex  about 8 years ago

Commit id: e18f8c16a873f934a3172a72248ffdf9dac8b346

deletions | additions      

       

\verb|bg.exp_fit| estimates the background using a maximum likelihood estimation  (MLE) of the delays distribution. Additional fitting functions are available in  \verb|bg| namespace   (i.e. the \verb|background| modulw, module,  \href{http://fretbursts.readthedocs.org/en/latest/background.html} {link}). The second argument, \verb|time_s|, is the  \textit{background period} (section~\ref{sec:bg_intro}) and the third, \verb|tail_min_us|,  is the inter-photon delay threshold above which the distribution is assumed exponential.  It is possible to use different thresholds for each photon stream, passing a  tuple (i.e. a comma-separated list of values, \href{https://docs.python.org/3.5/tutorial/datastructures.html#tuples-and-sequences}{link}) instead of a scalar.  Finally, it is possible to use a heuristic estimation of the threshold using  \verb|tail_min_us='auto'|. For more details refer to the \verb|calc_bg| documentation  (\href{http://fretbursts.readthedocs.org/en/latest/data\_class.html#fretbursts.burstlib.Data.calc_bg}{link}).  After FRETBursts provides are two kind of plots to represent  the background has been estimated, it background. One  isuseful to compare  the histogram histograms  of inter-photon delays with an compared to  the fitted exponential distribution as shown reported  in figure~\ref{fig:bg_dist_all} figure~\ref{fig:bg_dist_all})  (see section~\ref{sec:bg_intro}). section~\ref{sec:bg_intro} for details on the inter-photon distribution).  This plot is performed with: with the command:  \begin{lstlisting}  dplot(d, hist_bg, bp=0) 

Figure~\ref{fig:bg_dist_all} allows to quickly identify pathological cases when the   background fitting procedure returns unreasonable values.   Another useful The second background-related  plot is the timetrace of the estimated background, background rates,  as shown in figure~\ref{fig:bg_timetrace}. This plot allows to monitor background changes taking place during the measurement. In our experience, coverglass This plot is obtained with the commans:  \begin{lstlisting}  dplot(d, timetrace_bg)  \end{lstlisting}  Coverglass  impurities can contribute to the background even when focusing deep into the sample (10um (10μm  or more), and these These  impurities tend to bleach on timescales of minutes resulting in background variations during the course of the measurement,  such as the one shown in figure~\ref{fig:bg_timetrace}a. Another source of background variation, visible in figure~\ref{fig:bg_timetrace}b, is   the evaporation in case Additionally, when  the sample is placed on the coverglass without in not sealed in  an enclosure (gasket). observation chamber,  evaporation can contribute to background variations, similar to the  one shown in figure~\ref{fig:bg_timetrace}b.  \paragraph{Python details} For an ALEX measurement, the tuple passed to  \verb|tail_min_us| to define the thresholds, is required to have have   5 values corresponding the 5 photon streams.   The ordering order  of the photon streams can be obtained from the \verb|Data.ph_streams| attributes attribute  (i.e. \verb|d.ph_streams| in our example). The estimated background rates are stored in the \verb|Data| attributes  \verb|bg_dd|, \verb|bg_ad| and \verb|bg_aa|, corresponding to the photon  streams \verb|Ph_sel(Dex='Dem')|, \verb|Ph_sel(Dex='Aem')| and \verb|Ph_sel(Aex='Aem')|  respectively. These attributes are lists of arrays (one array per excitation spot).  The arrays contain the estimated background rates in the different background periods.  \subsubsection{Error metric and optimal threshold}  The functions that fit the background also return an estimation of the