Flaviu Cipcigan edited magnetoresistance.tex  over 10 years ago

Commit id: 74e1ec13f02a73444a4714de7debad70b5e73124

deletions | additions      

       

Substituting the components of $\mathbf{B}$, $\mathbf{E}$ and $\mathbf{j} = n q \mathbf{p} / m^*$ into the equation of motion for the charge carrier in the presence of a magnetic field \eqref{eq:eom-B} gives:  \begin{equation}  \begin{split}  j_x = &=  \frac{\sigma_0}{1 + (\omega_\textrm{c} \tau)^2}\,  E_x + \frac{\sigma_0 \omega_\textrm{c} \tau}{1 + (\omega_\textrm{c} \tau)^2} E_y \\   j_y &= -\frac{\sigma_0 \omega_\textrm{c} \tau}{1 + (\omega_\textrm{c} \tau)^2} E_x + \frac{\sigma_0}{1 + (\omega_\textrm{c} \tau)^2} E_y  \quad \textrm{, where} \end{split}  \end{equation}  \begin{equation}