Flaviu Cipcigan edited magnetoresistance.tex  over 10 years ago

Commit id: 3c5bac8219f72f70ca1a6104c1f465255495b2bf

deletions | additions      

       

\end{split}  \end{equation}  Substituting the components of $\mathbf{B}$, $\mathbf{E}$ and $\mathbf{j} = n q \mathbf{p} / m^*$ into the equation of motion for the charge carrier in the presence of a magnetic field \eqref{eq:eom-B} gives:  \begin{equation}   \begin{split} \begin{eqnarray}  j_x &= &\frac{\sigma_0}{1 + (\omega_\textrm{c} \tau)^2} &E_x + \frac{\sigma_0 \omega_\textrm{c} \tau}{1 + (\omega_\textrm{c} \tau)^2} &E_y \\  j_y &= -&\frac{\sigma_0 \omega_\textrm{c} \tau}{1 + (\omega_\textrm{c} \tau)^2} &E_x + \frac{\sigma_0}{1 + (\omega_\textrm{c} \tau)^2} &E_y   \end{split}   \label{eq:current-B}  \end{equation} \end{eqnaray}  where  \begin{equation}  \sigma_0 = \frac{n q^2 \tau}P{m^*}