Flaviu Cipcigan edited magnetoresistance.tex  over 10 years ago

Commit id: 1cf64d1bd65f6e3c77493b675dd0511d3846c2de

deletions | additions      

       

\gamma(\tau) &:= \frac{1}{N} \sum_{k=1}^{N} \frac{\sigma_0^{(k)}}{1 + (\omega_\textrm{c} \tau_k)^2} \tau_k   \end{split}  \end{equation}  Equation \eqref{eq:current-B} Equations \eqref{eq:currentx-B}, \eqref{eq:currenty-B}  will now read: \begin{equation}  \begin{split} j_x &= =  \gamma(1) E_x + \omega_\textrm{c} \gamma(\tau) E_y \\ \end{equation}   \begin{equation}  j_y &= =  -\omega_\textrm{c} \gamma(\tau) E_x + \gamma(1) E_y\end{split}  \end{equation}  As previously, $j_y = 0$ in equilibrium, giving 

j_x = \left(\gamma(1) + \frac{\omega_\textrm{c}^2 \gamma(\tau)^2}{\gamma(1)}\right) E_x  \end{equation}  Therefore, in the presence of charge carriers with different lifetimes, the conductance in the $x$ direction \emph{does} depend on the magnetic field.At this moment, it'll be nice to have some plots of how this new conductivity depends on $B$. Hm...