Michela Ceria edited section_Multivariate_polynomials_on_bits__.tex  about 6 years ago

Commit id: c4912046c9ceca7184f58bc6920bb96b6ede193b

deletions | additions      

       

\\  Two polynomials $f,g \in \Fb[x_1,...,x_n]$ are called \emph{equal} if   \begin{center}  \emph{a term $x_1^{i_1}\cdots x_n^{i_n}$ appears in $f$ with nonzero coefficient $a_{i_1...i_n}$ \\if \\  if  and only if $x_1^{i_1}\cdots x_n^{i_n}$ appears in $g$ with coefficient $a_{i_1...i_n}$ as well.}  \end{center}  Then, we can see that, in $\Fb[x,y]$, $x^3+0y^{12}=x^3=x^3+0*xy^{32}$. $x^3+0y^{12}=x^3=x^3+0xy^{32}$.  \\  As seen in section \ref{Sec:Polynomials} for univariate polynomials, the sum and the product of polynomials in $\Fb[x_1,...x_n]$ are defined as for multivariate polynomials over $\RR$, only taking into account that their coefficients are bits.  \begin{Example}\label{SumEProdF2Multivar} 

\end{itemize}  \end{Example}  \begin{Exercise}\label{operazionimultivar}  Compute the following sums and products in $\Fb[x,y,z]$: $\Fb[x,y,z]$ and find the degree of the final result:  \begin{itemize}  \item $(xy^3+y)+(xy^3+x^2z+)$  \item $(x+y+z^3)(x+y+z^3)$