Michela Ceria edited bits2.tex  over 7 years ago

Commit id: 9de94c66588c17ee1a14e7772f2e9937801cc985

deletions | additions      

       

A polynomial $p\in \Fb[x]$ of degree $2$ or $3$ is reducible if and only   if it has at least a root in $\Fb$.  \\  Or, equivalently, \emph{Or, equivalently,}  \\  A polynomial $p\in \Fb[x]$ of degree $2$ or $3$ is irreducible if and only   if it has no roots in $\Fb$. 

\begin{Exercise}\label{Factorize}  Factorize the following polynomials in $\Fb[x]$:  \begin{itemize}  \item $p_1(x)=x^5+x^4+x+1$ $p_1=x^5+x^4+x+1$  \item $p_2(x)=x^4+x^2+1$ $p_2=x^4+x^2+1$  \end{itemize}  Hint: try all possible irreducible factors. factors of degree $1$ and $2$.  \end{Exercise}  %  \begin{Exercise}\label{IrredDeg4}  Find all the irreducible polynomials of degree $2$ in $\Fb[x]$.\\  Use this result to prove that $p(x)=x^4+x+1$ $f=x^4+x+1$  is irreducible in $\Fb[x]$. \end{Exercise}      

to define one more operation: \emph{the division of polynomials}.   \\  A consequence of more advanced theory for polynomials with coefficients in a field is the  following. If we consider two polynomials $f(x)$ $f$  and $g(x)$ $g$  in $\Fb[x]$, we can find two other polynomials, say $q(x), r(x)$, $q, r$,  such that $f(x)=g(x)\cdot q(x) +r(x)$ $f=g\cdot q+r$  and $\deg(r(x))< \deg(g(x))$. $\deg(r)< \deg(g)$.  \\ The polynomial $q(x)$ $q$  is called \emph{quotient}, whereas $r(x)$ $r$  is the \textbf{remainder}. If $r(x)=0$ $r=0$  then we say that $g(x)$ $g$  \emph{divides} $f(x)$, $f$,  or that we have performed an \emph{exact division} between $f(x)$ $f$  and $g(x)$. $g$.  %\\  %This is a general property and, in particular, it holds for polynomials in bits.  \begin{Example}\label{QuotRem}  Let us consider $f=x^2+1, \, g=x$ in $\Fb[x]$; we clearly have $q=x$   and $r=1$:  $$x^2+1=x\cdot x+1.$$  If we consider $f=x^2+1, $f=1+x^2,  \, g=x+1$ in $\Fb[x]$, it holds we note that  $x^2+1=(x+1)\cdot (x+1)$, so $q=g $ and $r=0.$  \end{Example}  Let us now see how to compute the quotient and the reminder; we will use  

\end{center}  If in $f(x)$ a term of degree smaller than $\deg(f)$ does not appear, we put   it in the table with coefficient zero. \textbf{zero}.  \\  Now we divide the term of maximal degree of $f$ by that of $g$,   getting a new monomial $m$; in our particular case $m=x$ 

\end{tabular}  \end{center}  Then, we multiply $m\cdot g$ and we pose insert  the result in the table under $f(x)$, $f$,  so that the terms of same degree are lined up.   \begin{center}  \begin{tabular}{ccc|cc} 

& & & &   \end{tabular}  \end{center}  Sum We sum  the lined up lined-up  monomials (remember that the coefficients belong to $\Fb$, so $1+1 = 0$!!!!); the obtained sum is the \emph{partial reminder} of our division.    \begin{center} 

\end{tabular}  \end{center}    If the partial reminder's remainder's  degree is greater or equal than the degree of $g$ $g$, \emph{then}  repeat the procedure; if not, otherwise,  stop and: and observe that  \begin{itemize}  \item the polynomial under $g$ is the quotient $q$  \item the partial reminder becomes remainder is  the reminder (final) remainder  $r$ \end{itemize}  In our example $q=x$ and $r=1$. 

\begin{Exercise}\label{QuoRemEx}  Perform the division between the following polynomials in $\Fb[x]$  \begin{itemize}  \item $f(x)= $f=  x^3+x^2+1$, $g(x)=x^3+1$; $g=x^3+1$;  \item $f(x)= $f=  x^4+x $, $g(x)=x+1$; $g=x+1$;  \item $f(x)=x^5+x^3+1 $f=x^5+x^3+1  $, $g(x)=x^2+x+1$; $g=x^2+x+1$;  \item $f(x)=x^6+x^5+x^4+x^3+x^2+x+1 $f=x^6+x^5+x^4+x^3+x^2+x+1  $, $g(x)=x^3+x^2+1$. $g=x^3+x^2+1$.  \end{itemize}  Which of them are exact divisions?  \end{Exercise}