Massimiliano Sala edited bits4.tex  about 6 years ago

Commit id: 6d0911a8e34532b4e7558f9f090da340ab031cca

deletions | additions      

       

$f(0,0,0)=0,\, f(0,0,1)=0,\, f(0,1,0)=1,\,  f(0,1,1)=1,\, f(1,0,0)=1,\, f(1,0,1)=1,\,  f(1,1,0)=0,\, f(1,1,1)=0 \,.$\\  The absolute norm form We want to derive the ANF  of $f$ is $f$, We know that it something like  $$f (x, y, z) = axyz + bxy + cxz + dzy + ex + f y + gz + h,$$  where %  for some  $a, b, c, d, e, f, g, h \in \Fb$, so by \Fb$.  By  evaluating the ANF in $(0,0,0)$ we see that $f (0, 0, 0) = h$. Since the function $f$ is defined so that By definition of $f$,  $f (0, 0, 0) = 0$, so  we can conclude that have identified $h$ as  $h = 0$.\\ Evaluating the ANF in the other $3$-tuples of bits and comparing with the definition of $f$  we can find all the other coefficients coefficients.  \end{Example}  \begin{Exercise}  Determine the ANF of the function in the previous example.\\  (hint: start with evaluating $f$ at the  $3$-tuples s.t. the bit $1$ appears only once, then evaluate on pass to evaluating $f$ at  the $3$-tuples where $1$ appears twice and conclude finish  with $(1,1,1)$) and we obtain evaluating at $(1,1,1)$).\\  The result is  $f (x, y, z) = x + y$ \end{Example} \end{Exercise}  The following function, often used in cryptography, is called the \emph{majority function}:  $$f: (\Fb)^3 \rightarrow \Fb $$