Michela Ceria edited section_Multivariate_polynomials_on_bits__.tex  about 6 years ago

Commit id: 14bdf30b3e2cd35e3617aabe93d869574c01a34a

deletions | additions      

       

\deg(x^iy^j) \,=\, i+j\,.  $$  If we consider $xy^5 \in \Fb[x,y]$,   we have $deg_x(xy^5)=1$, $deg_y(xy^5)=5$, $\deg_x(xy^5)=1$, $\deg_y(xy^5)=5$,  and $deg(xy^5)=6$. $\deg(xy^5)=6$.  \\ The \emph{degree of a polynomial} $f\in \Fb[x,y] $ is the maximal degree of the monomials appearing  in $f$ with nonzero coefficient, so, if $f=x^3y+xy^6-y^2\in \Fb[x,y]$, $deg(f)=7$ $\deg(f)=7$  and if $g=x^3+0y^{12}$ then $deg(g)=3$. $\deg(g)=3$.  \begin{Exercise}\label{Gradi2var}  In $\Fb[x,y]$ what is...  \begin{itemize} 

\item $x_1-\frac{1}{2}x_2$ is not a polynomial in $\Fb[x_1,x_2]$;  \item $x_1x_2x_3^3+1$ is a polynomial in $\Fb[x_1,x_2,x_3]$.  \end{itemize}  When (as we will usually do) have done before)  we will deal with two or three variables, we will denote them as $x,y$ or $x,y,z$, so for example $xy+1\in \Fb[x,y]$, $x^4y+z^3 \in \Fb[x,y,z]$. \\  For $1 \leq j\leq n$, the \emph{$j$-degree} of a term in $n$ variables $x_1^{i_1}\cdots x_n^{i_n}$ is the value $i_j$. In formulas   $$deg_j(x_1^{i_1}\cdots $$\deg_j(x_1^{i_1}\cdots  x_n^{i_n})=i_j.$$ The \emph{total degree} (or, simply, degree)   of a term in $n$ variables $x_1^{i_1}\cdots x_n^{i_n}$ is the sum of all $deg_j$ $\deg_j$  for all $1 \leq j\leq n$, i.e. $$deg(x_1^{i_1}\cdots $$\deg(x_1^{i_1}\cdots  x_n^{i_n}) =\sum_{j=1}^n deg_j(x_1^{i_1}\cdots x_n^{i_n}) =i_1+...+i_n.$$ If we consider $x_1x_3^5 \in \Fb[x_1,x_2,x_3]$, \Fb[x_1,x_2,x_3,x_4]$,  we have $deg_1(x_1x_3^5)=1$, $deg_2(x_1x_3^5)=0$,  $deg_3(x_1x_3^5)=5$ $\deg_1(x_1x_3^5)=1$, $\deg_2(x_1x_3^5)=0$,  $\deg_3(x_1x_3^5)=5$, $\deg_4(x_1x_3^5)=0$  and $deg(x_1x_3^5)=6$. $\deg(x_1x_3^5)=6$.  \\ The \emph{degree of a polynomial} $f\in \Fb[x_1,...,x_n] $ is the maximal degree of the monomials appearing  in $f$ with nonzero coefficient, so, if $f=x^3y+xz^6-z^2\in \Fb[x,y,z]$, $deg(f)=7$ $\deg(f)=7$  and if $g=x^3+0y^{12}$ then $deg(g)=3$. $\deg(g)=3$.  \begin{Exercise}\label{Gradi}  In $\Fb[x_1,x_2x_3]$ $\Fb[x_1,x_2x_3,x_4]$  what is... \begin{itemize}  \item the $2$-degree of $x_2^3x_3$?  \item the $4$-degree of $x_2^3x_3$?  \item the  degree of $x_2^3x_3+x_2$? $x_2^3x_3+x_2x_4$?  \item the degree of $x_1^7+x_2^4x_3^3$? $x_1^7+x_2^4x_3^3+x_4^3x_1$?  \end{itemize}  \end{Exercise}  Two polynomials $f,g \in \Fb[x_1,...,x_n]$ are called \emph{equal} if  

if and only if   $x_1^{i_1}\cdots x_n^{i_n}$ appears in $g$ with coefficient $a_{i_1...i_n}$ as well.}  \end{center}  Then, we can see that, in $\Fb[x,y]$, $x^3+0y^{12}=x^3=x^3+0xy^{32}$. $x^3+0y^{12}=x^3=x^3+0xy^{32}$ and in $\Fb[x_1,x_2,x_3,x_4,x_5]$,   $x_5x_4-x_2=x_5x_4+0x_3-x_2$.  \\  As seen in section \ref{Sec:Polynomials} for univariate polynomials, the sum and the product of polynomials in $\Fb[x_1,...x_n]$ are defined as for multivariate polynomials over $\RR$, only taking into account that their coefficients are bits.