Samaporn Tinyanont edited untitled.tex  almost 8 years ago

Commit id: 98ab9ea2bf8af3ce996be7b23f4c89956028eee0

deletions | additions      

       

\   The requirement of collimated relativistic flows leading to bi-polar jets in GRBs limit the central engines to only magnetars having periods of $1 \ \rm ms$ and magnetic fields of $\sim 10^{15} \ \rm G$. However, the less extreme population of magnetars can still power quite fantastic cosmic fireworks. \citet{Duncan_1992} noted that the spin down timescale given in \ref{eqn:timescale} is shorter than the SN shock breakout time, making SNe that create magnetars brighter than usual. These subclasses of brighter Type II SNe are indeed observed (e.g. \citealp{Richardson_2002}). Recently, a number of rare superluminous SNe (SLSNe) are discovered, emitted emitting  the total radiation energy of $\sim 10^{51} \ \rm erg$ (e.g. SN\,2005ap, \citealp{Quimby_2007}; SN\,2008es, \citealp{Miller_2008}). The radioactive decay of $\rm ^{56}Ni$ alone cannot output this amount of energy. \citet{Kasen_2010} showed that magnetars with $B \sim 10^{14} \ \rm G$ and initial period $P_i \sim 2-20 \ \rm ms$ can release rotational energy via magnetic dipole radiation on the spin-down timescale comparable to the effective diffusion time of the ejecta. They showed that these magnetars can enhance the peak luminosity to what given by \begin{equation}  L_{\rm peak} \sim E_{\rm p} t_{\rm p}/t_{\rm d}^2 \sim 5 \times 10^{43} B_{14}^{-2} \kappa_{\rm es}^{-1} M_{5}^{-3/2}E_{51}^{1/2} \ \rm erg s^{-1}   \end{equation}