Jason R. Green edited Second-order decay.tex  over 9 years ago

Commit id: d5e350622246c1f5a6c3c33c99528119441fd172

deletions | additions      

       

\begin{equation}  S_2(t) = \frac{C_2(t)}{C_2(0)} = \frac{1}{1+\omega tC_2(0)}  \end{equation}  In second order, we define and  the time dependent time-dependent  rate coefficient as the time derivative of the inverse of the survival function[insert citation]  \begin{equation}  k_2(t) \equiv \frac{d}{dt}S_2(t)^{-1} $k_2(t)  = \omega C_2(0)  \end{equation} C_2(0)$.  $S(t)$ has been changed to fit a second order model of irreversible decay. From this definition of $k(t)$, we define a statistical distance. The statistical distance represents the distance between two different probability distributions, which can be applied to survival functions and rate coefficients.[cite] Integrating the arc length of the survival curve , $\frac{1}{S(t)}$, gives the statistical length  %\begin{equation}  % \mathcal{L}(\Delta{t})^2=\left[\int_{t_i}^{t_f}k(t)dt\right]^2