Jason R. Green edited $n^{th}$-order decay.tex  over 9 years ago

Commit id: c9d3e7b022d2ec4a69271b7afd5822bd1473b262

deletions | additions      

       

\begin{equation}  \frac{\mathcal{J}_n(\Delta t)}{\Delta t} = \int_{t_i}^{t_f}{(n-1)^2\omega^2}([A_0]^{n-1})^{2} dt  \end{equation}  The inequality becomes  \begin{equation}  (n-1)^2\omega^2([A_0]^{n-1})^2\Delta t^2-[(n-1)\omega[A_0]^{n-1}\Delta t]^2\geq0  \end{equation}  Again, we see that when Both the length squared and the divergence are $(n-1)^2\omega^2([A_0]^{n-1})^2\Delta t^2$:  the bound $(n-1)^2\omega^2([A_0]^{n-1})^{2}\Delta t^2=[(n-1)\omega[A_0]^{n-1}\Delta t]^2$ holds, holds when  there is no static or dynamic disorder, and a single rate coefficient can be defined is sufficient  for the irreversible decay process.