Jason R. Green edited $n^{th}$-order decay.tex  over 9 years ago

Commit id: c0dbcedf07f9ce45fa975c1f03e3d43e1034e9f8

deletions | additions      

       

\begin{equation}  k_n(t) \equiv (\frac{d\frac{1}{(S(t)^{n-1)}}}{dt})\equiv(n-1)\omega[A_0]^{n-1}  \end{equation}  The nonlinearity of the rate law leads to solutions that depend on concentration.  As shown in equation 4, the statistical length is the integral of the cumulative time dependent rate coefficient over a period of time $\Delta{t}$. The statistical length is \begin{equation}  \mathcal{L}_n(\Delta t)^2 = \left[\int_{t_i}^{t_f}(n-1)\omega([A_0]^{n-1})dt\right]^2   \end{equation}